

- The hybrid and the progenies in the subsequent generations are repeatedly backcrossed to one of the original parents used in the cross
- The objective of backcrosses method is to improve one or two specific defects of a high yielding variety
- Recently, tungro resistance has been transferred from
 O. rufipogon by recurrent backcrossing to IR64.

- Usually associated with improving cultivar of selfpollinated species or an <u>inbred</u> of a cross-pollinating species for trait governed by single gene
- Provides precise way of improving a <u>cultivar that excels</u> in a large number of attributes, but is <u>deficient in one</u> characteristic
- Provides gains of predictable value from improved trait.

- (A = recurrent parent, B = non-recurrent, donor parent)
- ♦ step 1: cross (A x B) \rightarrow F1 (50% recurrent parent)
 - > [50% of genome from A plus 50% of unrelated genome from B]
- ♦ step 2: backcross (A x F1)→BC1F1 (75% recurrent parent)
 - [50% of genome from A plus 50% of genome from F1, which itself is 50% A]
 - > therefore [50% + 50%(50%)] = 75% A genome
- ♦ step 3: backcross (A x BC1F1)→BC2F1 (87.5% recurrent parent)
 - [50% of genome from A plus, 50% of genome from F1, which itself is 75% A]
 - therefore [50% + 50%(75%)] = 87.5% A genome

- ♦ step 4: backcross (A x BC2F1)→BC3F1 (93.75% recurrent parent)
 - [50% of genome from A plus 50% of genome from F1, which itself is 87.5% A]
 - ➤ therefore [50% + 50%(87.5%)] = 93.75% A genome
- Step 5: backcross (A x BC3F1)→BC4F1 (96.875% recurrent parent)
 - [50% of genome from A plus 50% of genome from F1, which itself is 93.75% A]
 - therefore [50% + 50% (93.75%)] = 96.875% A genome

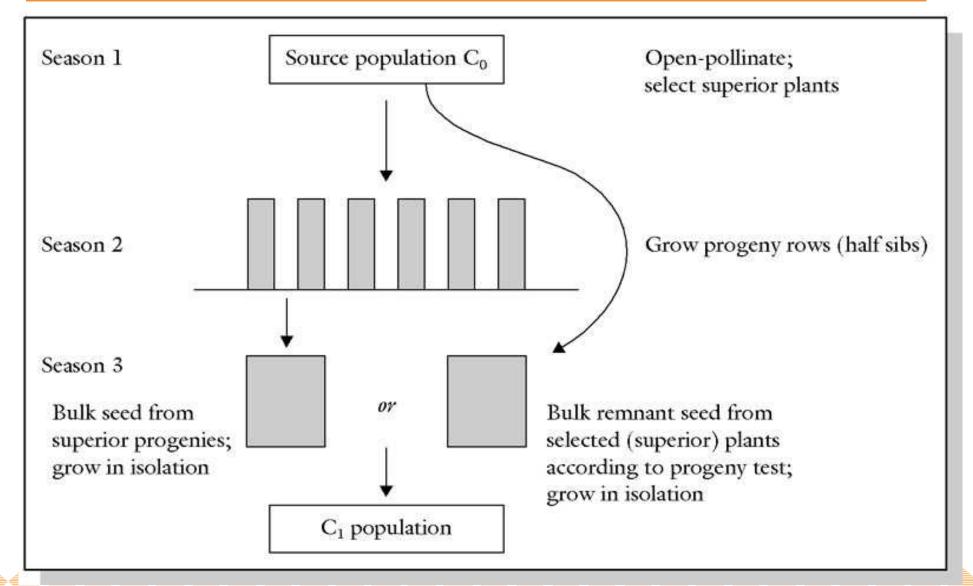
- General equation for average recovery of the recurrent parent
 - : 1 (½) ⁿ⁺¹
- * where, n is the number of backcrosses to the recurrent parent for the F₁, n= 0; for BC₁, n=1; for the BC₂, n=2; for the BC₃, n=3, etc.

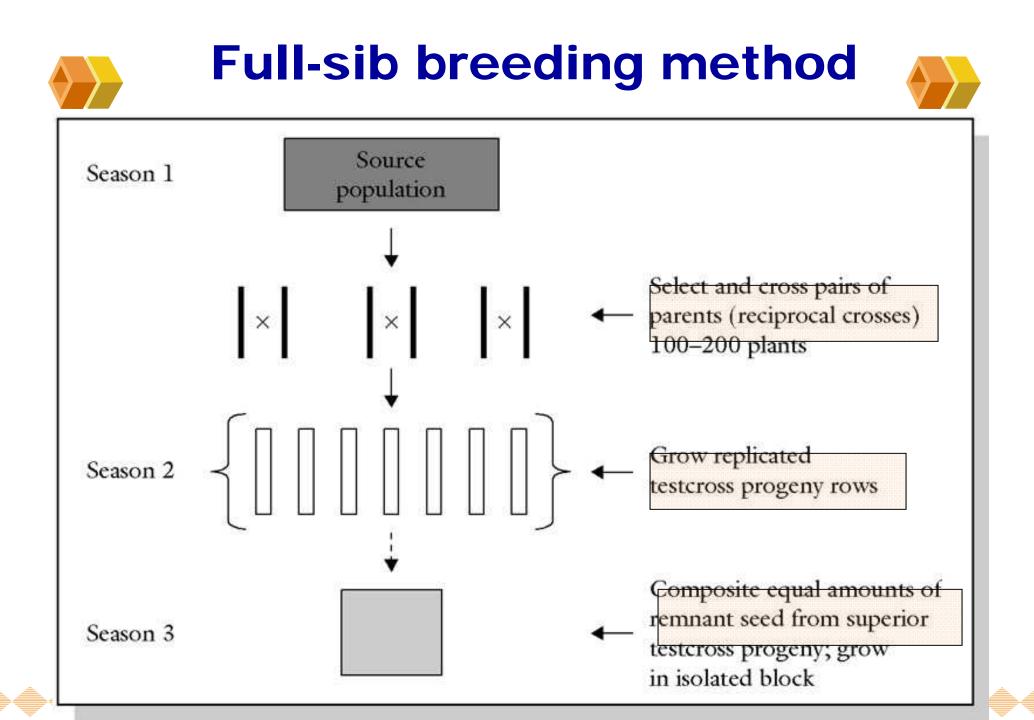
Implementation

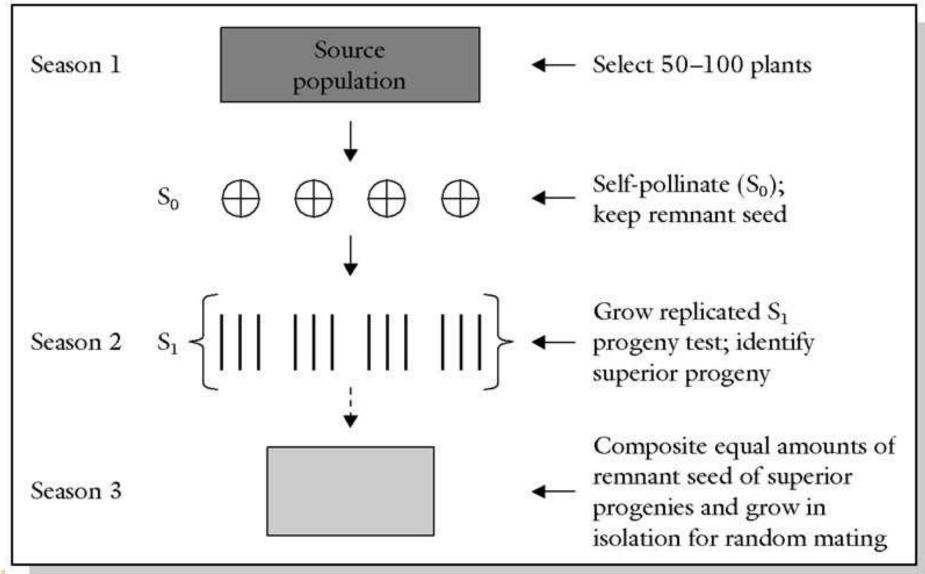
- Satisfactory recurrent parent must exist. Backcross procedure produces new cultivar phenotypically similar to one favored by both farmer and processor.
- Must still be satisfactory for all traits, (other than the one to be improved), in 6-10 generations down the road.
- Commonly used to transfer disease resistance genes, eg powdery mildew and leaf rust in wheat, phytophthora resistance in soybean.
- Growing demand for food and processor quality traits, breeders see resurgence in backcrossing compositional traits such as fatty acid and amino acid composition traits to specific lines of interest in soybean, corn, canola, and other crop species.

How many backcrosses should a breeder make?

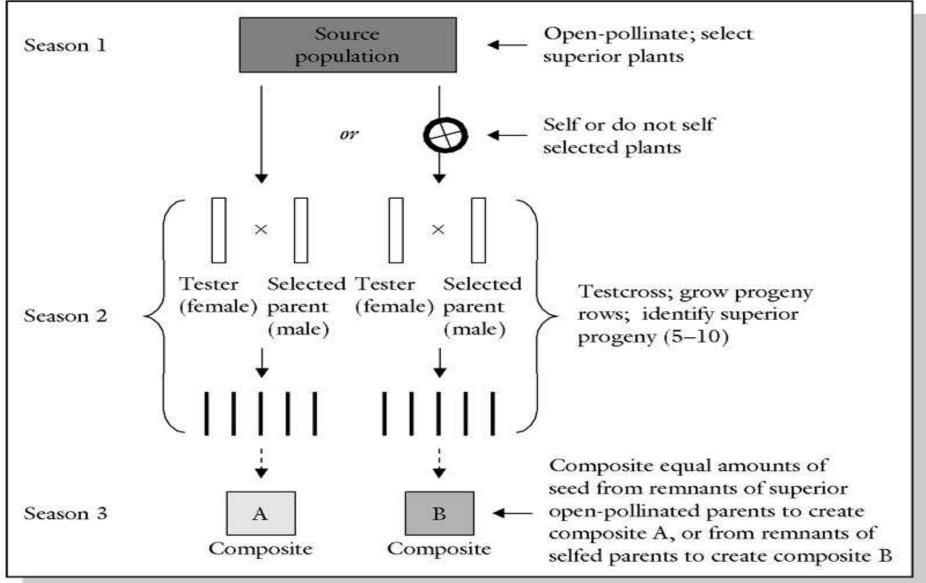
Factors such as:


- 1) importance of recovering all characteristics of RP,
- 2) relatedness of recurrent and donor parents
- **3)** selection among backcross progeny for the RP phenotype
- Selection, especially in first 2 backcross generations, will speed recovery of the RP genome
- 5 or more backcrosses considered effective for recovery of recurrent parent genome.



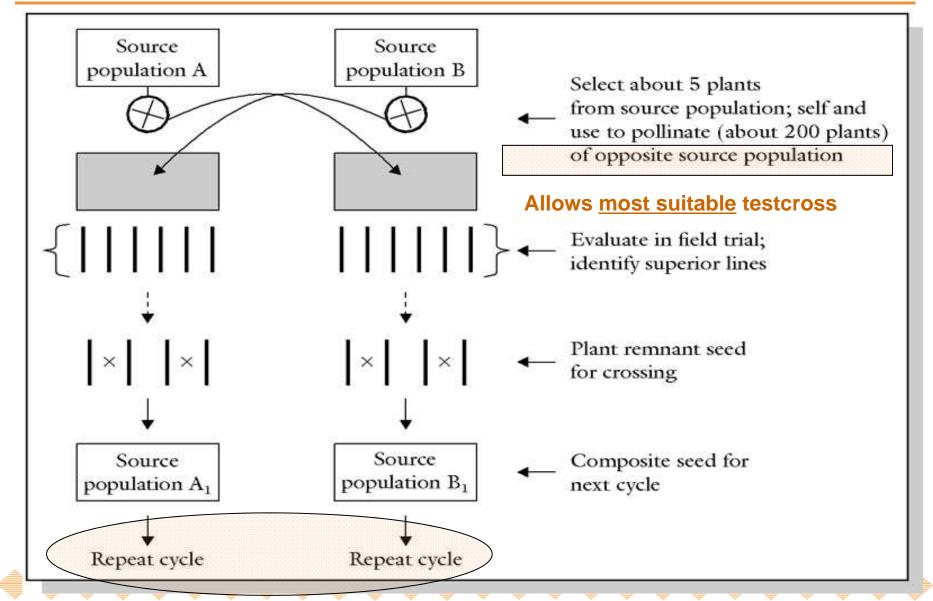

Additional Methods

Ear-to-row selection, generalized scheme



Selfed-progeny Performance Breeding Method

Half-sib Selection, with a Progeny Test



Half-sib Selection, with a Testcross

Hybrid rice breeding

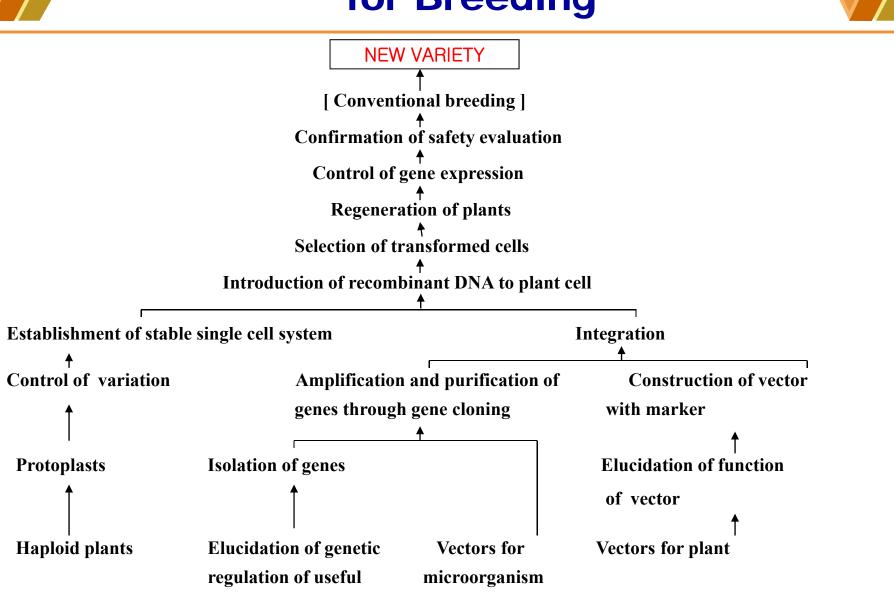
- Hybrid varieties exploit the phenomenon of hybrid vigor for increasing the yield potential of rice beyond the level of inbred modern rice varieties
- Hybrid varieties are grown from the F1 seeds
- F1 seed is obtained from a cross between two inbred parents
- Farmers must obtain new hybrid seed for each planting from an accredited source
- Hybrids have been released in China (e.g. Zhen Shan 97 A/ Min-Hui 63 and V20 A/Ce 64), India (e.g. DRRH-1 and PA6201), Philippines (e.g. PSBRc26H–Magat andPSBRc72H -Mestizo).

Modern Tools : Role of Biotechnology

Anther Culture

Molecular Markers

Genetic engineering

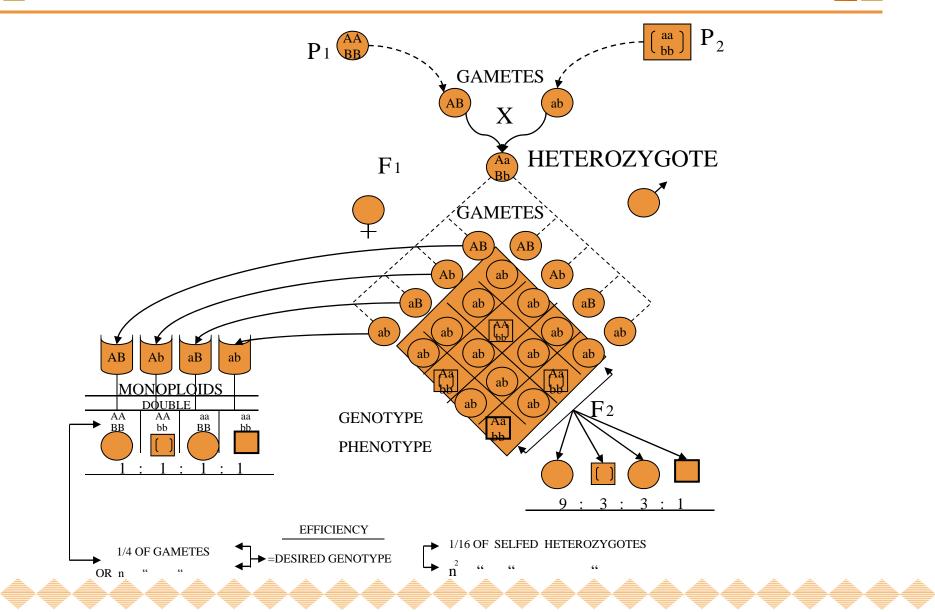

Wide Hybridization

Mutation Breeding

Progress of DNA Technique for Breeding

characters

Application of Biotechnology to Plant Breeding


Technique	Application
Anther culture	Rapid homozygosity(15 CV)
Embryo rescue	Transfer of genes from wild rice to Cultivated rice
MAS	Acceleration of breeding program
DNA Fingerprinting	Identification of genetic variation
Transformation	Introduction of novel genes into rice

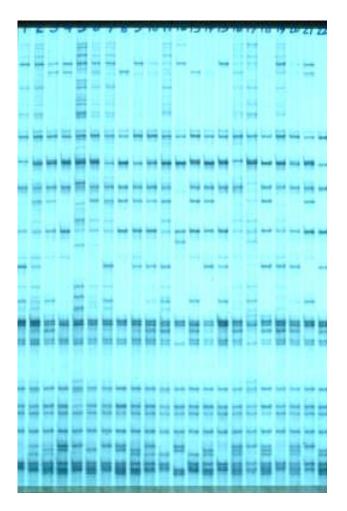
- Anther culture allows the production of homozygous lines in merely two generations.
- Haploids are raised from F1 anthers which after doubling the chromosomes produce true breeding homozygous lines
- Thus anther culture is important for developing true breeding lines in a short time and offers a way to accelerate breeding
- A salt tolerant variety, PSBRc 50, has been developed through anther culture at IRRI and released in the Philippines

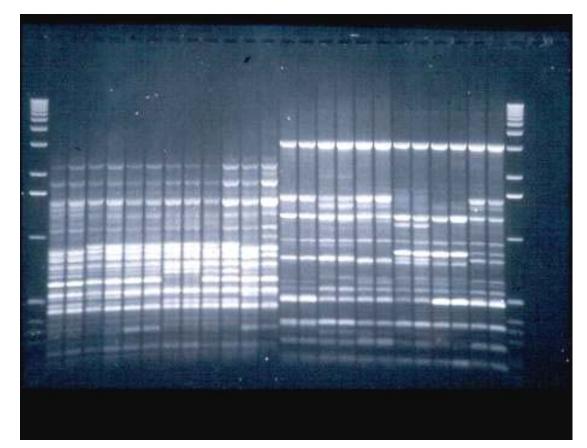
Advantages of Monoploids and Doubled Monoploids in Breeding Methods

Anther Culture

Molecular markers

DNA Marker

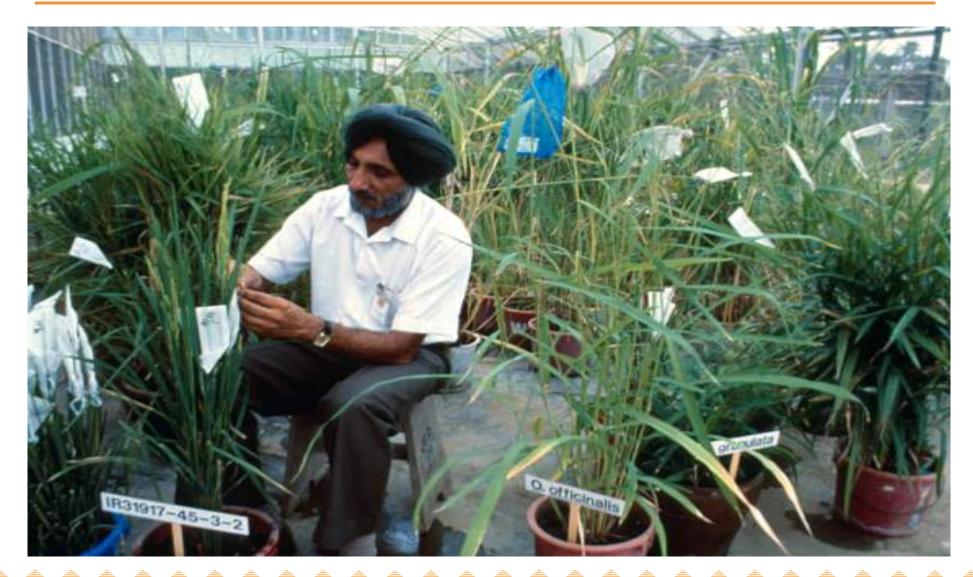

- Random Fragment Length Polymorphism (RFLP)
- Random Amplification of Polymorphic DNA (RAPD)
- Amplified Fragment Length Polymorphism (AFLP)
- Microsatellites (SSR)
- Numerous genes of economic importance such as disease and insect resistance have been tagged by tight linkage with molecular markers.
- Breeder can thus exercise MAS (marker aided selection) and hence accelerate rice breeding.
- Several genes with similar phenotype can be pyramided using MAS.


DNA Selection

AFLP

RAPD

- Rice that has been modified with genes from unrelated sources through special techniques of transformation i.e. by byepassing sexual hybridization, is called *transgenic rice*
- St rice plants with enhanced resistance to striped stem borer and yellow stem borer are available
- Transgenic rice plants with resistance to bacterial blight and sheath blight have been produced
- Many varieties with beta carotene that is converted into vitamin A within the body have been engineered, 'Golden rice'



- Wild species offer a rich source of useful and diverse genes to rice breeders
 - e.g. resistance to bacterial blight, Bph, tungro etc.
- Several genes have been transferred to cultivated rice from wild species of genus *Oryza*.
- This allowed rice breeders to widen the gene pool of cultivated rice.
- Recently tolerance to tungro virus has been transferred to IR64 and a variety has been released in the Philippines.

Crossing: Wild species

- Mutation is a sudden heritable change in the genetic material.
- This leads to a change in the phenotype called mutant
- Induction of useful mutants (using mutants such as X-rays and EMS) in the breeding program for the development of superior varieties is known as *mutation breeding*
- Many early maturing varieties of rice have been released in China, India, Philippines and Japan

Major Achievement of Rice Breeding in KOREA

Major Stresses to Rice Yield Stability in KOREA

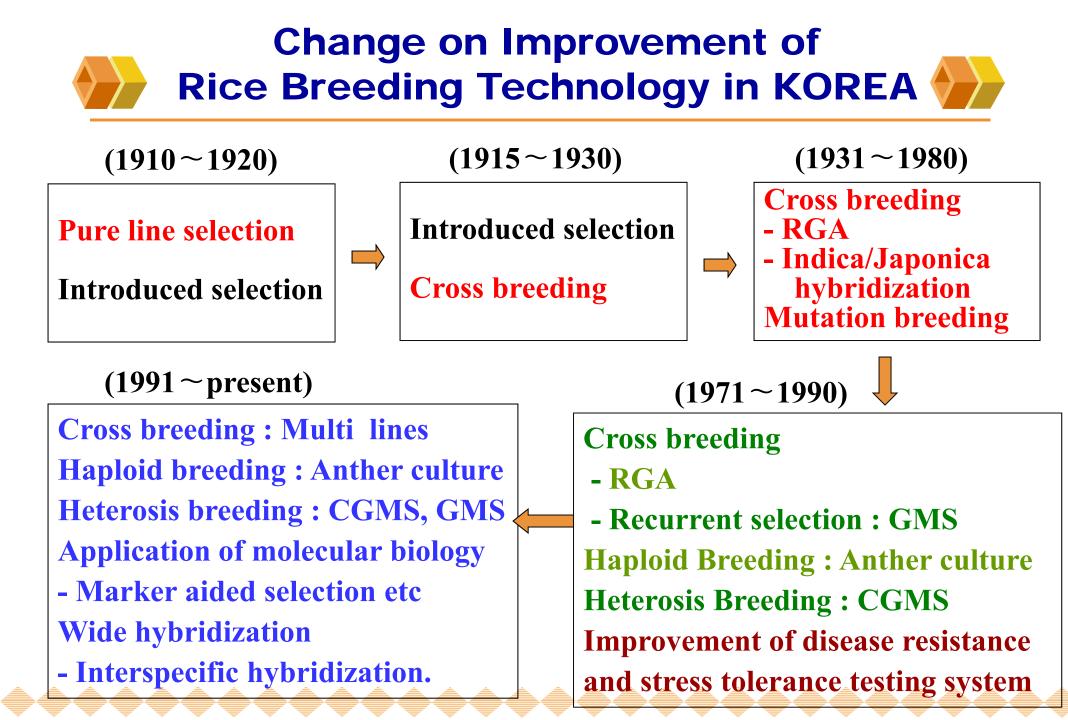
- Biotic stress
 - Blast, Bacterial, Stripe virus disease, Sheath blight,
 Brown planthopper etc.

- Abiotic stress
 - Cold, Lodging, Adaptability to late Planting etc.

Adaptability to late Planting

Lodging

Chronological Changes of rice Breeding Progress

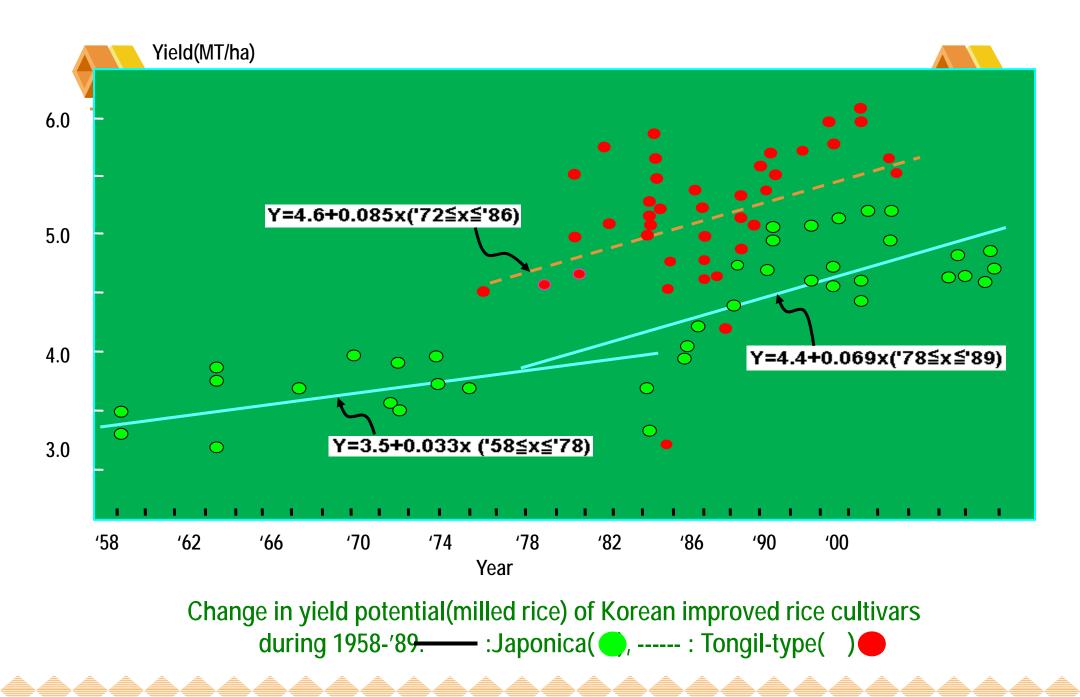


Year	Major event and development	Major breeding goals
Before 1906	Pure line selection by grower	
1906~1930	Collection of native variety Systematic pure line selection Introduced selection Starting cross breeding	High yield Early Lodging resistance
1931~1970	Creating of bred variety Systematic cross breeding - Pedigree method - Bulk method - Mutation breeding All japonica varieties	High yield Early Lodging resistant High nitrogen response Resistance to blast and Stripe Virus

Chronological Changes of rice Breeding Progress

Year	Major event and development	Major breeding goals
1971~1980	Creation of indica/japonica varieties	High yield stability
	Development of semi-dwarf HYV	Resistance
	Development of rapid generation	Grain quality
	advancement of self-sufficiency in rice	Stress tolerance
	International cooperation	
1981~1990	Application of in vitro technique to rice	Yield stability
	breeding	Multiple resistance
	Using male sterility	Short growth duration
	Development of semi-dwarf japonica	High sink-sources
	Systematic development of RGA	Rice quality
	Method of expanding genetic variability	Adaptability to mechanization
1991~	Wide hybridization by embryo rescue	Super yield
	Application of plant biotechnology	High quality & Value added
<u></u>		Multiple resistance/tolerance

Development of Rice Varieties in KOREA


Varietal group	'30s-'70s	'70s	'80 s	'90s	2000s	Total
Japonica	36	5	39	73	40	193
Tongil - type	-	25	15	6	3	49
Total	36	30	54	79	43	242

	Rice Yi	eld (t/ha)	Yield gap (A-B)	Index	(%)	
Year	Experi- ment(A')	Demonst- ration(A)	Farmer's (B)	(t/ha)	B/A	B/A'
1993	4.34	4.28	4.18	0.10	97.7	96.3
1994	4.84	4.87	4.59	0.28	94.3	94.8
1995	4.71	4.79	4.45	0.34	92.9	94.5
1996	5.28	5.19	5.07	0.12	97.7	96.0
1997	5.34	5.18	5.18	0.00	100.0	97.0
1998	5.20	4.92	4.82	0.10	98.0	92.7
2000	5.31	5.13	4.94	0.19	96.3	93.0
2005	5.52	5.34	4.90	0.44	91.8	88.8
Average	5.06	4.96	4.77	0.19	96.1	94.2

Varietal			Yie	ld pr	oducti	vity(t/	ha)			
group	'30	'50	'60	'70	'80	'85	'90	' 95	'00	'05
Japonica (%)	3.0 (100)	3.5	3.6 (126)	4.0	4.5 (151)	4.9	5.3 (179)	5.1	5.8 (193)	5.6 (186)
Tongil (%)	-	-	-	5.1 (100		6.1 (118)	-	6.8	7.4 (145)	7.5 (147)
Breeding technique			ť	bridi nd./J	zation Jap.)		Multip esistai		Higł Quali	
National av	′ e. –	-	-	2.7	7 3.3	4.4	4.0	5 4.	5 5.2	2 4.8

Major Achievement in Characters Improvement, 1960~2000s

Variety- group	1960s	1970s	1980s	1990s	2000s
Japonica- type	BL	SV	LR, CT, BL, BB, BPH, Short - term	Semi dwarf, CT, ST, HY, GQ, DS, FP	GQ,DS, Functional, Short - ter,m Sustainable
Tongil type	-	Semi dwarf , HY, LR, BL, SV ,BPH	BB,CT, BPH,GQ	Super yielding, Aromatic rice	Super yielding,

BL : Resistance to blast, SV : Resistance to stripe virus, LR : Lodging resistance,

CT : Cold tolerance, BB : Resistance to bacterial blight, BPH : Resistance to brown planthopper,

HQ : High quality, ST : Salt tolerance, HY : High yielding, DS : Adaptability to direct seeding,

FP : Adaptability to food processing (special rice)

Leading Rice Varieties of KOREA in 2006

Area 00ha)	%	Combination
205	21.7	Hwayeongbyeo / HR12800-AC21
126	13.3	Iri 390 / Milyang 95
125	13.3	Mandainishiki 1 // Wakiba / Gmmajea
78	8.3	Hwayeongbyeo // Sangjubyeo / Ilpumbyeo
73	7.7	Milyang 95 // Milyang 95 / Seogjinbyeo
52	8.0	Suweon 295-SV3 / Inabawase
47	5.0	Akishuho / Huji269
36	3.8	Daeseongbyeo/*5 Chucheongbyeo +
		Bonggwangbyeo/ *5 Chucheongbyeo
25	2.7	Chukei 830 / YR4811 Acp8
23	2.4	Hwayeongbyeo / YR 13604 ACP22
812	89.7	
	00ha) 205 126 125 78 73 52 47 36 25 23	$\begin{array}{c cccc} 00ha) & \% \\ \hline 205 & 21.7 \\ 126 & 13.3 \\ 125 & 13.3 \\ 125 & 13.3 \\ 78 & 8.3 \\ 73 & 7.7 \\ 52 & 8.0 \\ 47 & 5.0 \\ 36 & 3.8 \\ \hline 25 & 2.7 \\ 23 & 2.4 \\ \end{array}$

Improvement in Rice Breeding Technology and System in KOREA (I)

1970s

- Development of 'Tongil' cultivar from a three-way remote cross between semi dwarf Indica and Japonica rices
- Introduction of rapid generation advancement (RGA)
 scheme in conventional rice breeding system
- Establishment of effective testing & evaluation technologies for resistance to pests and grain quality