Fishing Genes from germplasm: Cloning, testing and use of gene-like fragments associated with root-knot nematode resistance in tuber-bearing *Solanum* genetic resources Patent: WO03/080838 A1

Watanabe, J. A.,^{1,2)} M. Ikegawa^{1,3)}, T. Yamada¹⁾ & K. N. Watanabe^{1,2)}

- 1. Dept. Biotech. Sci., Kinki University, Uchita, Wakayama, Japan
- 2. Gene Research Center, Univ. of Tsukuba, Ibaraki, Japan
- 3. Nara Advanced Inst. for Sci. and Technol., Ikoma, Nara, Japan

Root-knot nematodes infest over 2000 plant species

Mi is a known plant resistance gene to some Meloidogyne incognita

Root-knot nematode resistance genes in Potato

RKN is an important pest in warm and tropical zones including Southern part of Japan such as Nagasaki

- Original genetics lines developed (Watanabe et al. 1994)
 Genetics and physiology of the trait analyzed well (Iwanaga et al. 1989, Watanabe et al. 1996, 1999)
 - -> Quantitative, additive, temperature insensitive in phenotype.
 - -> Broad range of reactions to different taxa of the nematode.
- 3) Diverse sources of resistances in various wild and cultivated species (Watanabe and Watanabe 2000)
- 4) Base work and patent filed in potatoes on markers(PCT/JP02/12392)

Specific focuses

- Cloning gene-like fragments associated with rootknot nematode (*Meloidogyne* spp) resistance genes in potatoes
- Testing transgenic plants using the fragments
- Use of the gene information for diversity study and molecular breeding

Structure of Plant R genes (Science 292 #5525, Nature 411 #6839)

Common Features in Plant R genes

- LZ: Leucine Zipper (Coiled coil)
- **NBS: Nucleotide Binding Site**
- LRR: Leucine-Rich Repeat
- TIR: Drosophila Toll and mammalian interleukin-1 recepter (IL-1R) homologous region
- **PK: Protein Kinase**

Common Defense Mechanisms among Plants

Signal Transduction Pathway: Nature 415:977-983, 2002

Categories of primary products from Plant disease resistance genes (Simplified from Dangl & Jones 2001, Science 411:826-827)

RKN resistance gene in Sweetpotato

- Similar structure to known plant R genes but not identical
- Variation occurs in hexasomic hexaploid genome
- Diversity among 6x genotypes
- Possibility of SNPs for identification of R/S
- Weak expression
- Need elaboration of transgenic manipulation I
- Base knowledge filed as patent (JP 2001-223606)

Materials

- Diploid potato breeding lines with high levels of resistance to RKN
- (Watanabe et al. 1996, 1999)
- Tetraploid potato cultivars with known S for comparison

Methods

- **PCR**:Primers designed from common motifs in PDR genes especially from *Mi* and sweetpotato information
- Cloning:Random cloning of PCR products
- Sequence comparison:Difference between fragments from R and S genotypes
- Amino acid identity: with known PDR genes
 Construction of binary vector: pBI121 or pBE2113 Not
- Transformation: Agrobacterium tumefaciens LBA4404
- Resistance evaluation: regenrants on *N. benthamiana* and Desiree

NBS region comparison

85.37.38	G M	\mathbf{P}	G	s	G	ĸ	т	т	L	А	Y	R	v	Y	N	D	к	S	v
Beniazuma (SP	G M	G	G	Ι	G	ĸ	т	т	L	А	\mathbf{E}	R	v	Y	N	D	к	А	v
Mi-1.1	G M	\mathbf{P}	G	s	G	ĸ	т	т	г	А	Y	к	v	Y	N	D	к	S	v
Mi-1.2	G M	\mathbf{P}	G	s	G	K	т	т	L	А	Y	к	V	Y	N	D	к	S	V
PRF	G M	\mathbf{P}	\mathbf{G}	г	G	к	т	т	L	А	к	к	I	Y	N	D	\mathbf{P}	\mathbf{E}	V
I2C-1	G M	G	G	м	G	K	т	т	L	А	к	Α	V	Y	N	D	\mathbf{E}	R	V
I2C-2	G M	G	\mathbf{G}	г	G	к	т	\mathbf{T}	L	А	к	А	V	Y	N	D	\mathbf{E}	R	V
RPM1	G M	G	G	s	G	ĸ	т	т	L	s	А	N	v	\mathbf{F}	к	s	Q	S	V
Ν	G M	G	\mathbf{G}	v	G	к	т	\mathbf{T}	I	А	R	А	L	\mathbf{F}	D	т	г	L	G
RPP5	GQ	S	G	т	G	ĸ	S	\mathbf{T}	L	G	R	Α	F	-					
RPP2	GΡ	G	G	v	G	ĸ	т	\mathbf{T}	L	L	м	S	I						
ADG2																			

Kinase la

_ _ _ _

85.37.38]	S	S	Y	\mathbf{F}	D	г	н	А	W	С	т	V	s	Q	G	н	D	\mathbf{E}	R	
Beniazuma	(SP)]	A	S	Y	\mathbf{F}	D	Ι	R	А	W	т	т	Ι	s	Q	Q	н	N	L	R	
Mi-1.1	-	· s	s	R	\mathbf{F}	D	L	R	A	W	С	т	V	D	Q	G	С	D	\mathbf{E}	к	
Mi-1.2	-	· s	R	н	\mathbf{F}	D	L	R	А	W	С	т	V	D	Q	G	Y	D	D	к	
PRF	-	• т	S	R	\mathbf{F}	D	v	н	А	W	С	т	V	D	Q	L	Y	s	W	R	
I2C-1	-	· Q	к	н	\mathbf{F}	G	L	т	A	W	\mathbf{F}	С	V	s	\mathbf{E}	Α	Y	D	А	\mathbf{F}	
I2C-2	-	ĸ	N	н	\mathbf{F}	D	L	к	А	W	\mathbf{F}	С	V	s	\mathbf{E}	Α	Y	N	А	\mathbf{F}	
RPM1	-	R	R	н	\mathbf{F}	\mathbf{E}	S	Y	А	W	v	т	Ι	S	к	S	Y	v	Ι	\mathbf{E}	
Ν	-	R	м	D																	
RPP5																					
RPP2																					
ADG2																					

Deduced amino acid identity with known PDR genes

Solanum acaule NBS-LRR protein, 607/867 (70%)

Solanum tuberosum RGC1 protein, 607/867 (70%)

Solanum tuberosum NBS-LRR protein, 611/867 (70.5%)

Solanum tuberosum disease resistance protein Gpa2 protein, 611/867 (70.5%)

Solanum tuberosum Rx protein protein, 604/867 (70%)

Capsicum chacoense disease resistance protein BS2 protein, 482/870 (55.4%)

Lycopersicon esculentum PRF protein, 403/742 (54%)

Lycopersicon pimpinellifolium PRF protein, 391/726 (54%)

Lycopersicon esculentum root-knot nematode resistance protein, 410/816 (50%)

Arabidopsis thaliana RPP13 protein, 338/682 (50%)

Arabidopsis thaliana rpp8 protein, 399/822 (49%)

Arabidopsis lyrata NBS/LRR disease resistance protein RPM1, 352/675 (52%)

Summary results of cloning and sequence study

- 2613 bps fragment containing NBS and LRR regions with incomplete CC
- Conserved in NBS and LRR, but not identical to known genes
- Mapped at Chrom VI of potato around *Mi* of tomato
- R & S alleles: probably stop codons at introns in S
- Variation in S alleles

2600bp

RT-PCR using LRR region specific to the potato RKN gene
1. Marker, 2. *N.bensamiana* control, 3. And 4 transgenic plants,
5. *S. tuberosum* Susceptible control, 6 and 7 *S. tuberosum* donor,
8. And 9. Negative control

Resistance evaluation in N. benthamiana

- Root-knot nematodes (RKN) were maintained in soil pots with susceptible tomato genotypes.
- Minimum of five cuttings per line were used for the evaluation. Cuttings were made three weeks before transplanting to the RKN infested soil to let rooting enough.
- General infection method Iwanaga et al. (1989) except the incubation temperature of the plants were conducted between 30-35 degree Celsius at day temperature for 16 hours and 25-30 degree Celcius at night temperature for 8 hours at the controlled growth chambers.

Resistance evaluation

- Galls were scored in roots.
- Clones with only no galls were subjected to microscopic observation using erioglaucine (0.05% aqueous solution for 10 min, Yaghoobi et al. 1995) for egg observation.
- Further microscopic observation was conducted on the presence of adults.

Resistance scoring

- HR: No gall and no egg in root
- R: No gall and presence of some egg in root mass
- MR: Some galls @ specific root region and presence of eggs in root mass
- MS: Many galls @ specific root region
- S: Many galls over root system