Key access and utilization descriptors for finger millet genetic resources

This list consists of an initial set of characterization and evaluation descriptors for finger millet genetic resources utilization. This strategic set of descriptors, together with passport data, will become the basis for the global accession level information portal being developed by Bioversity International with the financial support of the Global Crop Diversity Trust (GCDT). It will facilitate access to and utilization of finger millet accessions held in genebanks and does not preclude the addition of further descriptors, should data subsequently become available.

Based on the comprehensive list ‘Descriptors for Finger millet’ published by IBPGR (now Bioversity International) in 1985, the list was subsequently compared with a number of sources such as ‘Descriptors for GRASS-WARMSEASON’ (USDA, ARS, GRIN), ‘Morphological diversity in finger millet germplasm introduced from Southern and Eastern Africa’ (SAT eJournal, ICRISAT, Vol. 3, Issue 1, December 2007), ‘Descriptors for Characterization and Evaluation of Finger millet (National Institute of Agrobiological Sciences, Genebank of Japan), ‘Phenotypic Diversity of Ethiopian Finger Millet [Eleusine coracana (L.) Gaertn] in Relation to Geographical Regions as an Aid to Germplasm Collection and Conservation Strategy’ (Kasetsart Journal, Natural Science, 41: 7 - 16, 2007). The initial list was further refined during a crop-specific consultation meeting held at the National Bureau of Plant Genetic Resources (NBPGR, India) in June 2009. It involved several scientists from NBPGR, the Indian Agricultural Research Institute (IARI) and All India Coordinated Research Project on Small Millets (AICRP-Small Millets).

A worldwide distribution of experts was involved in an online survey to define a first priority set of descriptors to describe, to access and to utilize finger millet genetic resources. This key set was afterwards validated by a Core Advisory Group (see ‘Contributors’) led by Dr A. Seetharam, Ex-Project Coordinator, All India Coordinated Research Project on Small Millets.

Biotic stresses included in the list were chosen because of their wide geographic occurrence and significant economic impact at a global level.

Numbers in parentheses on the right-hand side are the corresponding descriptor numbers listed in the 1985 publication.

PLANT DATA

Plant height [cm]
From ground level to the tip of inflorescence (ear). At dough stage (4.1.2)

Plant pigmentation
At flowering

<table>
<thead>
<tr>
<th>0</th>
<th>Not pigmented</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pigmented</td>
</tr>
</tbody>
</table>

Productive tillers
Number of basal tillers which bear mature ears (4.2.1)

Days to flowering
From sowing to stage when ears have emerged from 50% of main tillers (4.2.2)
Key access and utilization descriptors for finger millet genetic resources

2 Ear shape

At dough stage

1 Droopy (fingers lax and drooping)
2 Open (fingers straight)
3 Semi-compact (tops of fingers curved)
4 Compact (fingers incurved)
5 Fist-like (fingers very incurved)

Finger branching

At dough stage

0 Absent
1 Present

Finger length [mm]

From base to the tip of longest spike (finger) on main tiller. At dough stage

Number of grains per spikelet

At maturity

3 Low (4 grains)
5 Intermediate (6 grains)
7 High (8 grains)

Grain colour

Post-harvest

1 White
2 Light brown
3 Copper-brown
4 Purple-brown
99 Other (specify in descriptor Notes)

Green fodder yield

Consider tillering, height, leafiness, bulk and senescence. At maturity

Finger number

On main ear. At dough stage

Days to maturity

From sowing to stage when 50% of main tillers have mature ears

1000-grain weight [g]

Grain yield per plant [g]

Mean of five plants, post-harvest

Grain protein content [DW %]

Percentage of dry grain weight
Calcium content [DW %]
Percentage of dry grain weight (6.3.13)

BIOTIC STRESSES

Stem borers (*Busseola* spp.; *Chilo* spp.; *Sesamia* spp.)
(8.1.6)

Blast on foliage (*Pyricularia* sp.)
At 30 days (8.2.1)

Blast on neck (*Pyricularia* sp.)
At maturity (8.2.2)

Blast on finger (*Pyricularia* sp.)
At maturity (8.2.3)

NOTES

Any additional information may be specified here, particularly that referring to the category ‘99=Other’ present in some of the descriptors above.

CONTRIBUTORS

Bioversity is grateful to all the scientists and researchers who have contributed to the development of this strategic set of ‘Key access and utilization descriptors for finger millet genetic resources’, and in particular to Dr A. Seetharam for providing valuable scientific direction. Adriana Alercia provided technical expertise and guided the entire production process.

CORE ADVISORY GROUP

A. Seetharam, Ex-Project Coordinator, All India Coordinated Research Project on Small Millets, India
Bimal Kumar Baniya, Nepal Agricultural Research Council (NARC), Nepal
Paula Bramel, International Institute of Tropical Agriculture (IITA), Nigeria
Tom C. Hash, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India
Ulrike Lohwasser, Leibniz Institute of Plant Genetics and Crop Plant Research, Germany
Prem Mathur, Bioversity International, India
J. C. Rana, National Bureau of Plant Genetic Resources (NBPRG), Regional Station, Phagli, Shimla, India
Hari D. Upadhyaya, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India
REVIEWERS

Australia
Sally Dillon, Queensland Primary Industries and Fisheries

Burundi
Espérance Habindavyi, Institut des Sciences Agronomiques du Burundi

Canada
K. Anand Kumar, Agriculture Environmental Renewal Canada (AERC) Inc.

Ethiopia
Asfaw Adugna, Ethiopian Institute of Agricultural Research (EIAR)
Taye Tadesse, Ethiopian Institute of Agricultural Research (EIAR)

India
Ashok Kumar, National Bureau of Plant Genetic Resources (NBPRG)
Hittalmani Shailaja, University of Agricultural Sciences, Bangalore
M. Thimma Reddy, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Kenya
Mathews M. Dida, Maseno University
C. Oduori, Kenya Agricultural Research Institute

Senegal
Ousmane Sy, Institut Sénégalais de Recherches Agricoles (ISRA)

Sudan
Adam Mukhtar Elfadil, Agricultural Research Corporation

Tanzania
Seperatus P. Kamuntu, Lake Zone Agricultural Research Institute and Development (LZARDI)

Zimbabwe
Marco Mare, Crop Breeding Institute (CBI)