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Abstract 

Programmes for conserving genetic resources have collected, received and stored hundreds of thousands of 

accessions of different cultivated species and their wild and weedy relatives. Collection and regeneration 

protocols must consider the species (i.e., allogamous, partially allogamous, autogamous and dioecious) to 

ensure that the sample is representative of the population. Previous studies have used allelic richness as the 

basic parameter for determining sample sizes for genetic resource conservation. The concept of variance 

effective population size is important to the measurement of genetic representativeness and has been 

successfully used in genetic conservation (regeneration and collection). The aim of this chapter is to show 

how to practically apply the theory developed earlier and to demonstrate its use for answering practical 

questions that a manager of genetic resource conservation might pose when collecting and regenerating 

plant genetic resources. This chapter explains strategies for determining efficient sample size in order to 

maintain the representativeness of the original diversity when collecting and regenerating genetic resources. 

 

Introduction 

The great genetic complexity of most plant populations and the many possible ways that genetic resources 

may be used in the future makes it difficult to provide simple and efficient sampling schemes and optimal 

sample sizes for the maintenance of all species (Namkoong 1986). Programmes for the conservation of 

genetic resources and genebanks around the world have collected (in their centres of origin or elsewhere), 

received and stored hundreds of thousands of accessions of different cultivated species and their wild and 

weedy relatives. These accessions represent a wide spectrum of population diversity. Collection and 

regeneration protocols must consider the species (including allogamous, partially allogamous, autogamous 

and dioecious species, plus the type of materials being collected and regenerated) to ensure that the sample 

is representative of the population.  

____________________________________________________________________________________ 
 
This chapter is a synthesis of new knowledge, procedures, best practices and references for collecting plant 
diversity since the publication of the 1995 volume Collecting Plant Diversity: Technical Guidelines, edited by 
Luigi Guarino, V. Ramanatha Rao and Robert Reid, and published by CAB International on behalf of the 
International Plant Genetic Resources Institute (IPGRI) (now Bioversity International), the Food and 
Agriculture Organization of the United Nations (FAO), the World Conservation Union (IUCN) and the United 
Nations Environment Programme (UNEP). The original text for Chapter 5: A Basic Sampling Strategy: Theory 
and Practice, authored by A. H. D. Brown and D. R. Marshall, has been made available online courtesy of CABI. 
The 2011 update of the Technical Guidelines, edited by L. Guarino, V. Ramanatha Rao and E. Goldberg, has 
been made available courtesy of Bioversity International. 

http://cropgenebank.sgrp.cgiar.org/images/file/procedures/collecting1995/Chapter5.pdf
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Previous studies have developed equations for collection and regeneration to be applied when using 

practical breeding schemes or methods for conserving genetic resources, mainly of monoecious species. 

The studies and research previously done on conservation of genetic resources concentrated on developing 

sample sizes based on maximizing allelic richness or the number of distinct alleles at a single locus 

(Marshall and Brown 1975).  

Another important measurement of representativeness is related to how stochastic changes in allelic 

frequency – caused by sampling error in small populations (random genetic drift) – lead to continuous 

fixation and loss of alleles, and reduce the proportion of heterozygous individuals in the population (Crow 

and Kimura 1970; Wright 1931). These random changes in allelic frequency affect the genetic 

representativeness of the finite population. In a large mating population of N individuals, the reduced 

number of progenitors whose offspring will constitute the next generation causes random genetic drift, 

which is quantified and predicted using the parameter called "effective population size" (Ne). The effective 

population size is the size of an ideal population that has the same amount of drift in allelic frequency or the 

same rate of decrease in heterozygosity as the actual population. Several factors affect the effective size of 

a population, including the number of parents per generation, the number of corresponding offspring, the 

number of male and female gametes contributed per individual in the parental population, the mating 

system of the species, and so on. The effective population size, taken as a measure of the genetic 

representativeness of a seed sample, can be adapted to specific aspects of plant breeding and conservation 

of genetic resources, such as seed regeneration and collection. 

During the process of collecting, storing, regenerating and restocking germplasm, genetic drift occurs and 

affects a population’s genetic integrity in a number of ways. First, when collecting germplasm in the field, 

an appropriate sampling strategy should be used to avoid, as much as possible, dramatically reducing the 

size of the population (bottleneck). Second, when accessions are stored, the different survival rates of 

genotypes and the accumulation of mutations affect the genetic integrity of the accessions. Third, when 

seed of an accession is drawn for regeneration, the sample needs to be optimum in order to avoid genetic 

drift due to sampling or to differential survival (germination) or fecundity, leading to changes in the genetic 

constitution of the accession. Fourth, when plants of accessions are being regenerated in the field, insects, 

diseases, and other environmental factors can affect the plant stand, thereby limiting the accessions’ 

gametic contribution (offspring) to the next generation. Since we do not know which alleles will prove 

useful in the future, it is essential that sampling be done efficiently and that populations be of sufficient size 

to maintain as much genetic diversity as is practical. Large samples are expensive and difficult to manage, 

but if samples are too small, genetic diversity may be affected by the loss of valuable alleles through 

random changes in allelic frequency. Maintaining allelic diversity during regeneration depends on factors 

such as sampling procedures, seed viability and mating systems, all of which cause random genetic drift. 

Concerning the sample size for collecting germplasm, Allard (1970) pointed out that most plant species 

contain remarkable stores of genetic variation and consist of millions of different genotypes. Plant 

collectors can hope to sample only a fraction of the variation that occurs in nature. It is important that this 

fraction be as large as possible and contain the maximum amount of useful (now and in the future) 

variation. Allard (1970) also recognized that collectors as well as end-users of germplasm have limited time 

and resources at their disposal. Thus, the problem is to define a sampling procedure that yields the 

maximum amount of useful genetic variation, within a specified and limited number of samples (Marshall 

and Brown 1975).  

The aim of this chapter is to show how to apply the theory and equations developed earlier and to 

demonstrate their use for answering the practical questions that a manager of genetic resource conservation 

might pose when collecting and regenerating plant genetic resources. It includes theoretical considerations 

for probability models that compute the required sample size for conserving alleles at loci and for 

developing strategies for efficient sample size to maintain the representativeness of the original diversity 

when collecting and regenerating genetic resources. It also provides theoretical concepts on the variance 

effective population size (Ne(v)), and describes the derivation of manageable equations for collection and 

regeneration of germplasm. We give practical examples of how to (1) compute the required sample size for 

maintaining, with a certain probability, at least one copy of each allele at independent loci in the accession 

to be regenerated, (2) assess practical procedures for the collection and regeneration of genetic resources 
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that will increase the Ne(v) of random-mating populations and the Ne(v) of species with mixed self- and 

random-mating systems of reproduction and different natural rates of self-fertilization, and (3) examine 

practical collection and regeneration procedures that will increase the Ne(v) of dioecious species with 

different proportions of male and female plants. 

Theory 

Probability models for number of alleles in the sample 

We are interested in finding a sample size ng such that the probability of detecting at least one allele of each 

allele class is greater than a quantity 1- α or P(n)>1-α (for small α). Except in the case of synthetics derived 

from inbred lines, in real situations, allele frequencies are unknown; therefore, some simplification is 

necessary. Assuming that k-1 alleles occur at an identical low frequency of p0 and that the kth allele occurs 

at frequency of 1-[(k-1)p0], Crossa et al. (1993) showed that the sample size (ng gametes) required to retain 

with a probability P=1-α that at least one copy of each of the k allelic classes in each of the m loci should be 

larger than 
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where it is assumed that loci are independent and that diploid individuals (not gametes) are sampled. The 

assumption of loci independence is unrealistic, since genetic drift may cause non-random associations 

between linked loci. If the population is under random mating (a cross-pollinated species), linkage 

equilibrium can be assumed for all possible pairs of loci, so it is expected that, for each pair of loci, a 

similar number of coupling and repulsion combinations occur. This obviously does not hold for self-

pollinated species or species with mixed self- and random-mating systems of reproduction. Therefore 

equation 1 only offers approximate guidelines for the range of sample sizes, which are greatly dependent on 

the frequency of rare alleles. Furthermore, sampling ng= 2N gametes is equivalent to sampling (½)ng= N 

individuals (diploid zygotes) only for panmictic populations (i.e., idealized random-mating populations of 

infinite size with no association between any two genes within individuals). In this case, the number of 

diploid individuals that need to be sampled is exactly half the number of gametes (ng). 

It should be pointed out that the range of sample sizes given by equation 1 is based solely on probability 

models and does not consider the genetic structure of the population or specify how well a particular 

sample represents the reference population in terms of genetic parameters such as variance of allelic 

frequency, inbreeding, random genetic drift due to sampling error, genetic linkage, etc. Furthermore, 

probability models do not, by themselves, specify appropriate mating and reproduction systems such as 

panmixia, mixed self- and random mating, self-fertilization, and so forth, which could, under specific 

circumstances, maximize the genetic representativeness of the sample. 

Therefore, it is clear that for an initial census of a population of size N, it is very likely that Ne < N. For 

studying factors that will make Ne > N, aspects of population genetics theory must be incorporated into the 

probability models in order to facilitate the estimation of parameters such as the mean and variance of male 

and female contributed gametes and the mating systems that would facilitate control of male and female 

gamete contributions and thus allowing to increase Ne. 

Measure of representativeness: variance effective population size [Ne(v)] 

The concept of effective population size Ne(v) is useful when studying the breeding structure and genetic 

representativeness of an actual population, as related to an ideal population in which individuals mate at 

random with no variation in fertility: the number of progeny per parent has a binomial distribution (which 

approaches Poisson for large sample sizes) and its size is kept constant through time (Wright 1931). The 

effective population size determines the amount of sampling error between generations that causes random 

fluctuations in allelic frequency. On the other hand, natural and breeding populations fluctuate in size from 
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one generation to another, and some individuals might not produce gametes or might have different natural 

inbreeding levels and different natural self-fertilization rates than others. Thus, measures of effective size 

often deviate from the size of the actual population. 

Crow and Kimura (1970) derived models for studying the genetics of finite populations and assessed the 

relationship between the actual size of a population, N, and the distribution of progeny among parents by 

estimating its mean and variance. They derived an expression for the variance effective population size 

(Ne(v)) when a random sample of individuals is taken from an original population of size N, assuming that 

all the individuals potentially contribute male and female gametes,  
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where  measures the departure from Hardy Weinberg equilibrium in generation t1,    
 

         
; n is 

the number of offspring in generation t (or total number of seeds collected from the parents); and k is the 

number of gametes contributed by a particular parent. This can be considered a binomial random variable 

in the case of a random sampling of gametes with no variation in fertility, where    
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are the mean and variance of the gametes contributed by the parents, respectively.  

For large N,   
  

 

     
        .  Crow and Denniston (1988) provided expressions of the inbreeding 

and the variance effective number that are general for populations under random mating, and presented 

formulas as functions of means, variances and covariances of the number of gametes contributed by parents 

to the offspring. 

Genetic models based on the number of male and female gametes contributed by individuals of monoecious 

plant species have been developed for variance effective population size applied in the context of artificial 

selection (Vencovsky 1978) and to specific aspects of genetic resource conservation (i.e., collection and 

regeneration) (Crossa and Vencovsky 1994; Vencovsky 1978). Later, Crossa and Vencovsky (1997, 1999) 

and Vencovsky and Crossa (1999a, 1999b, 2003) showed the theoretical developments and practical 

applications of variance effective population size when drift occurs at two stages: when sampling parents 

for reproduction and when sampling gametes (offspring) from those parents for monoecious populations 

and for populations under mixed self- and random mating. 

Two-stage sampling model for random-mating species 

Crow and Kimura (1970) assumed that all N individuals in the parental generation potentially contribute 

gametes to the next generation. However, in real-life situations of plant breeding, regeneration and 

collection of plant genetic resources, some plants may fail to produce gametes (offspring) due to external 

factors such as poor seed viability or germination, insects and diseases in crossing blocks or the systematic 

exclusion of a fraction of parents, etc. Therefore, a more realistic model would consider that the overall 

effect of sampling on allelic frequency drift is the summation of drift occurring at two stages: (1) when 

sampling parents from the original population (first stage) and (2) when sampling gametes from these 

parents (second stage).  

Vencovsky (1978) first proposed models for computing V(k) and Ne(v) for the two-stage sampling model for 

monoecious species that considers that some plants might not contribute gametes to the next generation. 

Crossa and Vencovsky (1994) provided approximate equations for computing V(k) and Ne(v) for germplasm 

collection and regeneration with and without control of contributed male and female gametes. Crossa and 

Vencovsky (1997) provided the theoretical development of the two-stage model, gave an alternative 

derivation based solely on the theory of random sampling within a finite population, and demonstrated 

practical procedures for seed collection and regeneration. 
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Consider an initial set of N diploid monoecious plants (reference population), where P plants contributing 

male and female gametes are randomly selected (0 < P ≤ N). From the remaining N-P plants, R contributing 

only male gametes are also sampled at random [0≤  R ≤ (N-P)]. Therefore, M =P+R plants contribute male 

gametes, P plants contribute female gametes, and N-M plants do not contribute any gametes at all. Thus, 

the proportion of functional seed parents is u=P/N (or P =uN) (where 0< u ≤ 1) and the proportion of 

functional pollen parents is v= (P+R)/N =M/N (or M =vN) (0 < v ≤ 1). With these proportions, it is possible 

to simulate several important practical situations that arise when regenerating and collecting genetic 

resources.  

For example, the condition given by Crow and Kimura (1970) when developing equation 2 (i.e., that all N 

individuals potentially produce male and female gametes) is achieved by considering P=M=N or u=v=1, 

that is, a perfect stand of plants in the field. For seed regeneration, this means that all plants in the field are 

used as male and female parents. On the other hand, if P<N, M<N such that u<1, v<1, some plants fail to 

produce gametes due to poor germination, poor seed viability or a poor stand of plants in the field because 

of insects, diseases or other environmental factors. 

In seed collection activities, parameters u and v are fractions of seed and pollen parents, respectively, that 

effectively contribute gametes for generating the sample of seeds collected. They should be measured in 

relation to the size of the reference population under natural conditions. For monoecious species, Crossa 

and Vencovsky (1994) derived the following Ne(v) expressions for different alternative sampling schemes of 

female and male gametes. As shown in Annex A, we considered three different cases, depending on how 

male and female gametic control is performed.  

 Case 1: Plant-to-plant hand pollination is practiced and equal numbers of seeds are taken from each plant 

(female plus male gametic control; FGC + MGC scheme) (equation 3). 

 Case 2: Pollination is random and the same number of seeds is taken from each seed parent (female 

gametic control: FGC scheme) (equation 4). 

 Case 3: Pollination is random and n seeds are randomly sampled from a bulk of seeds stemming from P 

seed parents (RS schemes) and M pollen parents (equation 5). 

 

For seed collection, it can be assumed for random-mating species that the number of pollen parents (M) is 

very large; then potentially MN and v1. This over-simplification is used for calculating an upper limit for 

Ne(v). Also, the number of seed parents can be considered to be much smaller than N (P<<N) and u0. Thus, 

assuming that M is very large, MN, and v1, the approximation to Ne(v)  is given by equations 6 and 7. 

Also, annex A shows how equation 6 can be written when the average number of seeds per seed parent is 

given by n/P. 

Two-stage sampling model for mixed self- and random-mating species 

Many self-compatible species have a high natural rate of self-fertilization (s) and thus may be considered as 

having a mixed self- and random-mating reproduction system. Logically, the genetic structure of a mixed 

self- and random-mating species is complex because not all plants have the same level of natural 

inbreeding. Furthermore, the progeny of a population of a mixed self- and random-mating species will have 

a mixture of selfed seed with proportion s and half-sibs or outcrossed seeds with proportion 1s. This 

model excludes biparental crosses between parents. Proportion s can be artificially manipulated by hand-

pollination so that it becomes s = l when selfing all plants or s = 0 when crossing all plants. However, s 

varies from 0 to 1 in natural populations, which are assumed to be in inbreeding equilibrium when they 

reproduce naturally. In this case, f = s/(2s) [or s = 2f/(1+f)]. Vencovsky and Crossa (1999a) extended the 

two-stage sampling models for random-mating species to include mixed self- and random-mating species 

(0 ≤ s ≤ 1). They also developed estimates and direct expressions for computing V(k) and Ne(v) with 

applications to specific aspects of germplasm regeneration and collection. The authors considered an initial 

set of N diploid plants where P plants (contributing male and female gametes) are randomly sampled from 

N and, subsequently, R plants (contributing only male gametes) are randomly sampled from NP. 

Proportions u and v are defined as in two-stage sampling for random-mating monoecious species.  
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The model allows a correlation between the numbers of female and male gametes contributed per 

individual within the set of P plants (a correlation assumed to be zero for random-mating species). 

Therefore, the natural or artificial rate of self-fertilization (assumed to be constant over parents) is s, the 

proportion of crossing plants is 1s, and n is the total number of seeds collected from the set of P parents. 

Then, 2ns is the expected total number of female and male gametes contributed from selfing and 2n(1s) is 

the expected total number of male and female gametes contributed from crossing: the overall total of 

contributed gametes is 2ns+2n(1s) = 2n. 

Vencovsky and Crossa (1999a) considered random sampling of seed (RS) and female gametic control 

(FGC) under unrestrictive inbreeding and under inbreeding equilibrium. Here, we will consider only RS 

and FGC under inbreeding equilibrium. The general equations for a fraction u of potential parents 

contributing female gametes and v, the fraction of potential parents contributing male gametes, are given in 

Annex B. Equations 8 and 9 can be adapted for seed collection with the assumptions that the number of 

seed parents (P) is a very small fraction of the entire population (u  0) and that the number of pollinating 

parents (for s < 1) is sufficiently large, allowing the assumption that M  N, such that v  1. This last 

assumption tends to inflate the corresponding Ne(v) value. In practical situations, the number of pollen 

parents for each seed parent can be estimated using molecular markers, but it requires a sample of adult 

plants and the corresponding maternal offspring to be genotyped. 

Based on these assumptions, equations 10 and 11 were obtained for collecting n seeds from P seed parents 

(Vencovsky and Crossa 1999a) of a population in inbreeding equilibrium with a natural rate of self-

fertilization s. A fundamental Ne(v) expression is given by Cockerham (1969) for a group of n individuals or 

seeds differentiated from a reference population of infinite size solely by drift. See equation 12, which can 

be adapted for measuring the degree of representativeness contained in a single maternal descendant 

(equation 13), which is equivalent to equation 10 or 11 when P = 1. 

Seed collection from several subpopulations 

Under natural conditions, there may be situations in which a large population of a species, or meta-

population, is made up of a group of subpopulations. When seeds are collected in such a situation, the 

number of subpopulations from which seeds should be sampled is an additional sampling unit to be 

considered and incorporated for estimating Ne(v). Annex C shows some of the equations obtained by 

Vencovsky and Crossa (2003) when extending the theory developed by Cockerham (1969).  

Vencovsky and Crossa (2003) derived Ne(v)  equation 14 (Annex C), where S* is the total number of 

subpopulations in the region and C
2
 is the squared coefficient of variation of the number of seeds collected 

from the S subpopulations, which is ni for subpopulations i, such that  n= ∑ ni (i = 1, 2, …, S). With equal 

ni, C
2 
= 0. Parameters FST and FIT are Wright’s measures of the divergence among subpopulations and the 

total inbreeding coefficient, respectively (Weir, 1996). These F statistics can be estimated for the parental 

generation using codominant genetic markers. 

When seeds are not collected in bulk but on a progeny basis, an additional sampling unit is incorporated, 

namely the number of seed parents. Now the expression for estimating Ne(v)  is equation 15 (Vencovsky et 

al. 2007), where   
  is the square of the coefficient of variation of the number of seeds among 

subpopulations and   
  is the square of the coefficient of variation of the number of seeds among seed 

parents. Also, m  is the average coancestry among offspring within progenies, which can also be estimated 

using codominant molecular markers. Equations 14 and 15 (annex C) are useful for planning the collection 

sampling strategies necessary to obtain a desired Ne(v) value. 

Two-stage sampling model for dioecious species 

Originally Crow and Kimura (1970) derived Ne(v) expressions for species with separate sexes based on 

simplified assumptions. Later Crow and Denniston (1988) made the necessary correction of this earlier 

work. The aim of Vencovsky et al. (2011) was to consider the statistical properties of the number of 

contributed gametes in various practical situations. To this end, they transformed and adapted the formulas 

of Crow and Denniston (1988) in such a way that they are easy to apply in practical breeding situations and 

when collecting and regenerating genetic resources. Vencovsky et al. (2011) consider a finite reference 
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population such that all individuals are potentially functional parents; they also assume that, of the 

reference population, only a fraction of individuals is taken as functional parents. The derivations and 

results given by Vencovsky et al. (2011) refer only to dioecious species, and only the variance effective 

population size is considered. The reference population is considered under random mating, a condition 

also assumed by Crow and Denniston (1988). 

Some of the derivations of Vencovsky et al. (2011) are shown in Annex D and refer to populations of 

arbitrary size, excluding some parents, that is, a fraction of parents is systematically discarded or rejected, 

such that only a subset of the initial Nf female and Nm male parents effectively participate in the 

reproduction process (Annex D, equations 16–18). Consider that, of the initial Nf female parents, only P 

participate in reproduction such that the fraction is u = 
 

  
 (0 < u  1). For male parents (M), the fraction is 

v = 
 

  
 (0 < u  1). For the rejected Nf  P females and Nm  M males, the number of gametes contributed 

will be zero. Consider that f (female) and m (male) offspring are sampled, with a total of t = f + m, and also 

that the sex ratio is r = 
 

     
. 

In another case, all the parents are included (Annex C, equations 19–21). In both cases, when some parents 

are excluded or all the parents are included, three cases of gametic control are considered, no gametic 

control or random sampling (RS), female gametic control (FGC), and female gametic control and male 

gametic control (FMC+MGC) 

Practical applications 

Probability models for number of alleles in the sample 

The statistical genetic models used by Crossa et al. (1993) and based on equation 1 indicate that sample 

sizes of 160 to 250 plants of a random-mating population are required for capturing alleles at frequencies of 

0.05 or higher in each of 150 loci, with 90%–95% probability. These formulas consider the sample size for 

conserving at least one allele per locus, but they do not quantify the probability of conserving two, three or 

more alleles per locus. The genetic diversity of a population depends on the number and frequency of 

alleles at a locus and across loci, and determining a sample size depends on whether estimates of allele 

frequencies are available (Hernandez and Crossa 1993).  

However, when the required probability for conserving alleles at different loci increases or the frequency of 

a rare allele (p0) drops to 1%, larger sample sizes than those specified earlier are required. For example, for 

unknown associations between genes within individuals and p 0 =0.001, sample sizes of between 533 and 

1708 individuals will retain, with a probability of 0.9999, at least one allele from each class, considering a 

wide range of alleles, k = 2 to 20, and a number of loci ranging from m = 5 to 1000. Sample size is always 

more affected by low allele frequency than by the number of alleles or the number of loci. To maintain 

alleles at 3% frequency with a 0.9999 probability, assuming unknown associations between genes within 

individuals, the required sample sizes are between 177 and 564 individuals for 2 to 20 alleles per locus and 

for 5 to 1000 loci. For retaining alleles at a frequency of 5%, 105 to 335 individuals are required. For 6 

alleles per locus with allele frequencies between 0.03 and 0.10 and for 1 to 20,000 loci, a sample size of 

between 84 and 750 individuals will preserve at least one copy of each allele class in each locus with a 

probability of 0.9999999. 

Assuming two alleles at each of the 20,000 loci and one of them at a 0.05 frequency, 186 individuals will 

preserve this allele at each locus with a 95% probability. However, a sample size of 172 individuals will 

only retain an allele at 5% frequency, assuming no association between genes within individuals at any 

locus. However, this does not seem to be sufficient if associations between genes within individuals exist at 

some loci and/or if maintaining alleles at frequencies between 3% and 1% is required.  

Assuming that k-1 alleles occur at an identical low frequency for all loci makes the required sample size 

estimated by equation 1 conservative, because it is likely that some alleles will have higher frequencies, at 

least at some loci. The assumption of loci independence is unrealistic, since genetic drift may cause non-

random associations between linked loci. If the population is under random mating (a cross-pollinated 
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species), linkage equilibrium can be assumed for all possible pairs of loci, so that a similar number of 

coupling and repulsion combinations can be expected to occur for each pair of loci. This obviously does not 

hold for self-pollinated species or species with mixed self- and random-mating systems of reproduction. 

Recommendations for estimating general sample size using probability models 

General recommendations and/or guidelines concerning sample sizes should be given  

 within ranges (or intervals), depending on model assumptions and biological considerations such as 

number of alleles, loci, genetic linkage, etc. 

 

Furthermore, it is important to point out that 

 certain sample sizes (n) obtained from the probability models might or not provide a similar value for 

Ne(v). 

Two-stage sampling model for random-mating species – regeneration 

For germplasm regeneration of N (finite) plants in the field, equations 3, 4 and 5 (annex A) can be adapted 

for different situations and mating designs, for monoecious species. Assuming that accession size is kept 

constant (n = N), these expression are much simplified, as illustrated in the following cases.  

Two general cases are considered. 

Case 1 

The integrity of the accession is affected (u = P/N≤1), and there is loss of seeds from the original accession, 

but pollen and seeds are contributed by all remaining plants. Then P = M = uN (P = M; u = v). This is 

similar to the case where seeds of an accession are lost due to environmental causes, during storage in the 

genebank, or while accession plants are growing in the field. The exception is when u = 1, as shown in 

Table 5.1. 

Table 5.1: Variance Effective Population Size (Ne(v)) for Regenerating Accessions of a 
Monoecious Species Using Expressions Given for Cases 1a-c and Cases 2b-c for n=N=1000 and 
Different Proportions of Parents Contributing Male and Female Gametes to the Next Generation 
(u), Assuming Constant Accession Size 

 
u 

Case 1a* 
Ne(v)=N[2u/(2-u)] 

Case 1b 
Ne(v)=N[4u/(4-u)] 

Case 1c 
Ne(v)=Nu 

Case 2b** 
Ne(v)=N[4u/(1+2u)] 

Case 2c 
Ne(v)=N[4u/(1+3u)] 

0.1 105 103 100 333 308 

0.2 222 211 200 571 500 

0.3 353 324 300 750 632 

0.4 500 444 400 889 727 

0.5 667 571 500 1000 800 

0.6 857 706 600 1091 857 

0.7 1077 848 700 1167 903 

0.8 1333 1000 800 1231 941 

0.9 1636 1161 900 1286 973 

1.0 2000 1333 1000 1333 1000 

Source: Extracted from Crossa and Vencovsky (1994). 
*  Case 1a-c: Pollen: P=uN, Seed: M=uN. 
**Case 2b-c: Pollen: M=N, Seed: P=uN. 
(a) FGC + MGC (full sibs). 
(b) FGC (half sibs). 
(c) RS (random mating and random sampling). 
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Case 2 

The integrity of the accession is not affected; that is, pollen is produced by all plants (M = N) but seed is 

collected from only P plants. Then, M = N, v = 1, but P = uN. This case simulates a situation where only a 

portion of the total number of pollinated plants in the field is harvested. 

For Case 1, three mating designs based on different types of gametic control are considered: 

1. female and male gametic control (full-sib mating system), FGC + MGC 

2. female gametic control only (half-sib mating system), FGC 

3. no female and male gametic control, that is, random open pollination, and unequal numbers of seeds are 

randomly taken from the set of P parents, RS 

For Case 2, only schemes FGC and RS (b and c) are considered here because a scheme with control of both 

types of gametes (FGC+MGC) is not possible because, with Nu female parents available, only Nu pollen 

parents will be taken for obtaining full-sib progenies and not N. 

In Case 1a (seed and pollen from P = M = uN), where female and male gametic control involves full-sib 

crosses and taking equal numbers of seeds from P = M = uN plants, Ne(v) = N[2u/(2u)]. In Case 1b (seed 

and pollen from P = M = uN), where random pollination involves half-sib crosses among P = M = uN 

plants, and female gametic control implies taking equal numbers of seeds from P = uN plants, 

Ne(v) = N[4u/(4u)]. In Case 1c (seed and pollen from P = M = uN), with random pollination and unequal 

numbers of seeds randomly taken from P parents, Ne(v) = Nu.  

In Case 2b (seed from P = uN and pollen from P = M), where random pollination includes half-sibs among 

all plants, but female gametic control implies taking seeds from only P = uN pollinated plants, 

Ne(v) = N[4u/(1+2u)]. In Case 2c, with random pollination and unequal numbers of seeds randomly taken 

from P = uN parents, Ne(v) = N[4u/(1+3u)]. 

The above expressions for Cases 1 and 2 and the three mating systems, considering a range of accession 

losses (from 90% [u=0.l] to 0% [u=1, full stand of plants in the field]), are given in Table 5.1. For Case 1, 

with a perfect stand of plants (u=1), taking equal numbers of seeds per pollinated plant (female gametic 

control) and using hand-pollination (full-sibs) (male gametic control) produces Ne(v) = 2N; with only female 

gametic control and random pollination (half-sibs), Ne(v) = (4/3)N; and without male and female gametic 

control, Ne(v) = N. Values of Ne(v) for Case 2 (last two columns in Table 5.1) tend to be larger than their 

corresponding columns for Case 1 (the first three columns in Table 5.1) because the pollen pool is larger 

when M=N than when M=uN (except when u=1). 

How can a genebank curator regenerate an accession of a monoecious plant species that has lost a 

percentage of its seeds or plants, and still attain Ne(v) = N? 

In Case 1, a loss of 30% (u = 0.7) of the plant accessions can be recovered by male and female gametic 

control (Ne(v)=1077 when n = 1000), whereas a loss of 20% (u = 0.8) can be recovered by simply taking 

equal numbers of seeds from the 800 randomly pollinated plants that remained in the field (Ne(v) =1000). 

Furthermore, in Case 2, if all 1000 plants are left to pollinate randomly (half-sibs), but equal numbers of 

seeds are taken from only 500 of them (u = 0.5), Ne(v)=1000 = n. This indicates the importance of 

controlling female gametes as a mechanism for recovering the desired magnitude of Ne(v) because of the 

possible loss of seeds and/or plant accessions before and during the growing cycle (Case 1) or the potential 

problems encountered when harvesting only a portion of the total number of pollinated plants in the field 

(Case 2). 

Table 5.1 shows that Ne(v) is larger for female gametic control with half-sibs (Case 2 [fifth column in Table 

5.1]) than for female and male gametic control with full-sibs (Case 1 [second column in Table 5.1]). This is 

true up to an accession loss equal to or greater than 30% (u  0.7) (1167 versus 1077 for u = 0.7). When 

u > 0.7 under female and male gametic control with full-sib families from P = M = u N plants, Case 1 is 
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superior to that of half-sib families from M = N plants, but female gametic control on only P = uN families 

(1333, 1636 and 2000 versus 1231, 1286 and 1333 for u = 0.8 , 0.9 and 1.0, respectively). The half-sib 

mating system of Case 2 is the best option for compensating for insufficient sampling of female parents 

(smaller values of u) through increasing Ne(v), in contrast to the full-sib alternative of Case 1, which 

becomes important only for smaller accession losses (u > 0.8). On the other hand, female and male gametic 

control with the full-sib system in Case 1 (second column in Table 5.1) is always superior to female 

gametic control with the half-sib system in Case 1 (third column in Table 5.1) for all values of accession 

loss, as well as for the situation of no gametic control (fourth column in Table 5.1). 

As already pointed out, when comparing half-sibs with female gametic control (Case 2) versus full-sibs and 

total gametic control (Case 1), the former is preferred if deterioration of the accession is intermediate to 

severe (0 < u < 0.7). Accession losses in Case 1 increase drift that is attributable to sampling parents (first 

stage of sampling), but controlling female and male gametes should decrease drift due to sampling of 

gametes (second sampling stage) and, therefore, should help to control overall drift. The advantage of the 

half-sib system is that it does not require hand-pollination because pollen from all plants in the field can be 

used. It is a valuable alternative for decreasing the contribution to drift attributable to the sampling of 

parents (first stage). 

Recommendations for regenerating random-mating monoecious species  

Generally speaking, in the regeneration process discussed so far, two aspects are fundamental for 

maintaining adequate representativeness of accessions: 

 avoiding excessive deterioration of the accession  

 practicing female gametic control when sampling seeds after reproduction 

Two-stage sampling model for random-mating species – collection 

In collection activities, obtaining exact estimates of Ne(v) when collecting seeds is not possible in most 

cases. This is due to the fact that the real size of the reference population is not known, and fractions u and 

v, therefore, cannot be estimated. Equations 6 and 7 (Annex A) are only approximations, since the number 

of female parents sampled for seed collection (P) is considered to be a very small fraction of the entire 

population (u=P/N  0) and the number of pollen parents is admittedly very large, such that v=M/N1. 

Effective numbers, consequently, are overestimated. In any case, equations 6 and 7 can be considered for 

showing that under these assumptions, Ne(v) is dominated by the number of seed parents (P). As an example, 

consider a sample of 1000 seeds taken from P = 100 (10 seeds per parent), P = 200 (5 seeds per parent) and 

P = 500 (2 seeds per parent). With female gametic control, the resulting Ne(v) values are 308, 500 and 800, 

respectively (equation 6). If seeds are bulked and then sampled, the resulting Ne(v) values for n = 1000 are 

286, 447 and 667, respectively (equation 7). Once again, results demonstrate the importance of female 

gametic control in these activities.  

The alternative form of equation 6 can be used for planning collection strategies. If, for instance, collecting 

15 seeds per parent (  =15) is feasible, and a value of Ne(v)=1000 is required for representing the reference 

population, then Ne(v)= 4P 
  

     
 = 4P 

  

  
 = 1000, and P = 300 is the number of seed parents necessary to 

achieve Ne(v)=1000.  

The total number of seeds required in this case is n = 4500, and the average Ne(v) per maternal progeny is 

  e(v) = 3.33. An additional condition not mentioned earlier and required for the validity of computing P is 

that the seed parents should be genetically unrelated (negligible coancestry among all parents). 

There should be a minimum distance among seed parents during seed collection in order to have negligible 

coancestry among adult individuals. Investigations on pollen distance and on the reproductive 

neighbourhood area are generally recommended for estimating this distance (Viegas et al. 2011). Molecular 

markers can be used for this propose. 
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Recommendations for collecting random-mating monoecious species  

The main lessons for collectors of genetic resources are that Ne(v) can be increased by 

 increasing the number of seed parents (P)  

 taking an equal number of seeds per seed parent, that is, exercising female gametic control 

Two-stage sampling model for mixed self- and random-mating species – regeneration 

Equations 8 and 9 (Annex B) show that Ne(v) increases linearly with sample size n, for a given s, when 

regeneration occurs before any loss of plants in the field, with all parents contributing male and female 

gametes. Both equations assume inbreeding equilibrium and can be adapted to germplasm regeneration and 

collection, considering the effect of (1) an arbitrary rate of natural self-fertilization (s) and (2) random 

sampling of seeds or female gametic control (FGC). We will examine the same two cases we studied when 

considering the two-stage model for random-mating species, that is,  

 Case 1: loss of accessions given by u < 1 and v = u, with seed parents P = uN, and pollen parents M = uN  

 Case 2: no loss of accessions but seeds taken from uN pollinated plants; that is, seed parents P = uN and 

pollen parents M = N, when s < 1. An additional effect that can be considered is given by the fact that the 

number of collected seeds (n) that can be taken is equal to N (constant n=N) or arbitrary (n ≠N). 

 

Results obtained by Vencovsky and Crossa (1999a) indicated that FGC gives higher values of Ne(v) than RS. 

Female gametic control combined with adequate levels of u (u > 0.7) becomes an effective combination for 

maintaining values of Ne(v) equal to or higher than n, when n=N; whereas, with RS, values of Ne(v) are 

always smaller than sample size (n). In Cases 1 and 2 (here and below), RS of cross-fertilizing species 

(s = 0.0) is less affected by accession deterioration than are more self-fertilizing species at any level of 

accession deterioration (u). However, in Case 1 and Case 2, FGC of cross-pollinating species gives slightly 

higher values of Ne(v) than that of more self-fertilizing species but only for severe values of accession 

deterioration; the reverse is true for mild accession loss. Vencovsky and Crossa (1999a) found that Ne(v) = n 

for high values of u and when the species approaches panmixia (s = 0.0), under RS. 

Other findings from Vencovsky and Crossa (1999a) relative to germplasm regeneration can be pointed out, 

as given below. 

Female gametic control (FGC) always gives higher Ne(v) values than random sampling (RS) in all 

circumstances. This practice produces a rapid increase in Ne(v) for autogamic species when u > 0.7. 

In Cases 1 and 2, when seeds are taken randomly (RS), accession regeneration is more efficient for 

panmictic species than for autogamic ones, under any level of accession deterioration. This is also true with 

FGC and severe deterioration loss. On the other hand, autogamic species with FGC produce higher Ne(v) in 

regeneration than allogamic species when u is mild. 

For germplasm collection, the results obtained by Vencovsky and Crossa (1999a) contradict those for 

regeneration; that is, attaining adequate Ne(v), even with FGC for collecting autogamic species, is more 

difficult than regenerating accessions of this category when u > 0.8. The reverse is true for panmictic 

species. 

For constant accession size (n=N) and FGC, considered here as a reference point, the minimum value of u 

(u*) acceptable for having Ne(v)=n is given by u*=4/(s
2
+5). Evaluating this quantity gives u*= 0.8, 0.76 and 

0.67 for s = 0.0, 0.5 and 1.0, respectively. This indicates that more autogamic species permit slightly higher 

levels of accession deterioration, compared to more panmictic ones. Values given in Table 5.2 confirm this. 

Increasing sample size (n) during regeneration increases Ne(v), but only when s < 1. For perfectly autogamic 

species (s = 1), increasing n has no effect on Ne(v), as can be seen in Table 5.2. 
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Table 5.2: Variance Effective Population Size (Ne(v)) When Regenerating N= 500 Plants and 
Harvesting an Arbitrary Number of Seeds (n) for Different Values of Accession Loss or Proportion 
of Functional Parents (u) and Natural Rate of Self-Fertilization (s), Assuming Inbreeding 
Equilibrium  

u s n 
Case 1 – RS 
seed: P = uN 

pollen: M = uN 

Case 1 – FGC 
seed: P = uN 

pollen: M = uN 

Case 2 – RS 
seed: P = uN 
pollen: M = N 

Case 2 – FGC 
seed: P = uN 
pollen: M = N 

0.5 0 500 250.3 285.9 400.5 500.3 

0.5 0 1000 333.6 363.8 667.3 800.3 

0.5 0 3000 428.7 444.5 1200.7 1333.6 

0.7 0 500 350.4 424.5 452.1 583.7 

0.7 0 1000 538.9 622.5 824.4 1037.6 

0.7 0 3000 840.3 903.4 1827.4 2154.6 

0.9 0 500 450.5 581.0 487.0 643.3 

0.9 0 1000 818.9 1029.2 948.3 1242.2 

0.9 0 3000 1801.2 2118.5 2573.8 3274.5 

0.5 0.5 500 187.8 261.0 240.4 375.1 

0.5 0.5 1000 250.2 307.8 353.4 480.1 

0.5 0.5 3000 321.6 349.5 514.6 590.2 

0.7 0.5 500 262.9 433.2 302.6 552.8 

0.7 0.5 1000 404.3 579.5 506.7 815.8 

0.7 0.5 3000 630.3 747.9 920.4 1194.5 

0.9 0.5 500 338.0 683.9 353.4 750.4 

0.9 0.5 1000 614.4 1137.3 667.6 1333.9 

0.9 0.5 3000 1351.2 2038.2 1638.2 2770.1 

0.5 1 500 125.3 250.0 — — 

0.5 1 1000 166.9 250.0 — — 

0.5 1 3000 214.4 250.0 — — 

0.7 1 500 175.4 583.3 — — 

0.7 1 1000 269.6 583.3 — — 

0.7 1 3000 420.3 583.3 — — 

0.9 1 500 225.5 2250.0 — — 

0.9 1 1000 409.8 2250.0 — — 

0.9 1 3000 901.2 2250.0 — — 

Note: Cases 1 and 2 with random sampling of seeds (RS), female gametic control (FGC). 
Equations 8 and 9 used for RS and FGC Ne(v) values, respectively. 
For Case 2, v=1. 
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How can a genebank curator regenerate an accession of a mixed self- and random-mating species that 

has lost a percentage of seeds or plants and still attain Ne(v)=n? 

We can study the advantages of FGC over RS systems under Cases 1 and 2. For this situation, we consider 

an arbitrary value of n (n≠N). Values of Ne(v) for regenerating a hypothetical accession of N=500 plants in 

the field for Cases 1 and 2, under RS and FGC for various values of accession loss (1-u), natural rate of 

self-fertilization (s) and sample size (n) are shown in Table 5.2, assuming that plants are in equilibrium 

with respect to the mating system. 

In Table 5.2, effective sizes for Case 2 are always higher than the corresponding ones for Case 1, because 

of the larger pollen pool in Case 2, where M=N as compared to M=uN in Case 1. With complete autogamy 

(s = 1), the condition M=N is impossible because there is complete self-fertilization. This situation (M=N 

with s = 1) was wrongly included by Vencovsky and Crossa (1999a). The advantage of Case 2 over Case 1 

can be visualized by comparing Ne(v) values within the RS and FGC systems. 

As already mentioned, considering only Case 1, Table 5.2 shows that for small losses in accessions (large 

u) it is easier to regenerate more autogamic species, whereas for large accession losses (small u) it is easier 

to regenerate more panmictic species. 

If we collect n=N=500 seeds from 250 plants (u = 0.5) by taking two seeds per plant (FGC) of a panmictic 

species (s = 0) but using pollen from all M=N=500 plants (Case 2), the required condition Ne(v)=N=500 is 

achieved (Ne(v)=500.3 in the last column of Table 5.2). On the other hand, if we collect n=500 seeds from 250 

plants, by taking two seeds per plant (FGC) of an autogamous species (s = 1) (Case 1), the required condition 

is never achieved because Ne(v)=(1/2)N=250, irrespective of sample size n. As expected, this indicates that 

severe accession loss has a greater impact on autogamic species than on panmictic ones. If pollen from all 500 

plants of a panmictic species (s = 0) is used and 12 seeds (FGC) are taken from only 250 plants (u = 0.5 and 

n = 3000) (Case 2), Ne(v) = 1333.6 = 2.67N and Ne(v) = 1200.7= 2.40N with RS (Table 5.2). In Case 1, where 

the pollen pool is smaller than in Case 2 (for s < 1), with FGC, the condition that Ne(v) ≥ N is only achieved for 

a smaller accession loss (u > 0.7) than that allowed for Case 2 and u = 0.5. 

In Case 1, when there is an accession loss of 10% (u = 0.9) and 3000 seeds are collected under FGC from a 

panmictic species (s = 0), Ne(v)=  2,118.5 > 4N. In Case 2, a 30% accession reduction on the female side 

(u = 0.7) and collecting n = 3000 will produce Ne(v) = 2154.6 = 4.31N. 

For the three types of species considered, the condition that Ne(v) ≥ N is reached for u ≥ 0.7, under Case 1. 

In Table 5.2, it can be seen that the highest Ne(v) values are obtained by practicing FGC and that fractions of 

accession loss are very small (u = 0.9). In general terms, the combination of female gametic control with 

the possibility of having a larger pollen pool, as in Case 2, produces important increases in Ne(v) for u = 0.7, 

0.8 and 0.9, especially for sample size n >N. It is worth mentioning that the ideal situation for regenerating 

an accession occurs with FGC in autogamic species (s = 1) and no accession loss (u = 1). In such a case, 

there is no drift between the original and the regenerated accession and Ne(v)= ∞ (equation 9). Practicing 

random sampling in such a situation is inadequate. 

Recommendations for regenerating mixed self- and random-mating species  

 Taking an equal number of seeds (FGC) gives higher values of Ne(v) than a random number of seeds (RS).  

 Female gametic control combined with adequate percentage germination (u  >0.7) becomes an effective 

combination for maintaining values of Ne(v) equal to or higher than n, when n=N; whereas, with RS, 

values of Ne(v) are always smaller than sample size n.  

 Random sampling of cross-fertilizing species (s = 0.0) is less affected by accession deterioration than it is 

with more self-fertilizing species at any level of accession decrease in percent germination. 

 The combination of female gametic control with the possibility of having a larger pollen pool produces 

important increases in Ne(v). The ideal situation for regenerating an accession occurs with FGC in 

autogamic species (s = 1) and no accession loss (u = 1). In such a case, there is no drift between the 

original and the regenerated accession and Ne(v)=  . Practicing random sampling in such a situation is 

inadequate. 
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Two-stage sampling model for mixed self- and random-mating species – collection 

For collection activities, equations 10 and 11 (Annex B) are used to perform some numerical evaluations. It 

is assumed that n = 1000 seeds are collected from P=100 and P=20 adults, assuming random sampling (RS) 

and female gametic control (FGC), for different values of the natural rate (s) of self-fertilization. In natural 

conditions, the population is assumed to be in equilibrium relative to the mating system. Corresponding 

Ne(v) values are given in Table 5.3. 

Table 5.3: Effective Sizes Ne(v) of n=1000 Seeds Collected from P=100 and P=20 Seed Parents, 
for Random Sampling (RS) and Female Gametic Control (FGC), from a Population in Inbreeding 
Equilibrium and Rate of Self-Fertilization (s) 

s 
P=100 P=20 

RS FGC RS FGC 

0.0 285.9 307.7 74.1 75.5 

0.3 162.8 177.0 38.5 39.2 

0.7 79.1 86.6 17.5 17.9 

1.0 45.5 50.0 9.8 10.0 

Note: Equations 10 and 11 used for RS and FGC Ne(v) values, respectively. 

 

As can be seen in Table 5.3, the dominating factors in the effective size values, for n =1000 seeds collected, 

are the number of seed parents and the population’s rate of self-fertilization. Practicing gametic control has 

a positive effect for increasing Ne(v); however, that diminishes as the number of seed parents decreases. 

Values such as those given in Table 5.3 can be used as a guide for planning sampling procedures when a 

specific Ne(v) value is desired. With FGC, P=100 (10 seeds per parent) and under panmixia (s = 0), we have 

an average effective size value of Ne(v)=3.1 per seed parent. To attain a value of Ne(v)=1000, in this case, 

P = 322 seed parents would be necessary under the supposition that they are genetically unrelated 

(negligible or zero coancestry among them). For autogamy (s =1.00) and P =100, we have an average 

  e(v)= 0.5 per seed parent, meaning that P =2000 would be required to reach a total Ne(v) of 1000. This 

specific example reinforces the fact that obtaining seed samples with adequate representativeness is more 

difficult in more autogamic species. 

Effective size values for a single maternal progeny, under the assumption of mixed self- and random 

mating, can be obtained directly from equation 13 (Annex B). Table 5.4 gives an Ne(v) that is applicable to 

this case for several sample sizes (n) and self-fertilization rates (s). Considering the same example as in the 

preceding paragraph, with n =10 seeds per seed parent and s = 0.00, Ne(v) = 3.1, as found earlier. The 

following numbers of seed parents (P) would be necessary for having a joint value of Ne(v)= 1000, for 

s = 0.0, 0.25, 0.5, 0.75 and 1.0, respectively, with n =10 seeds collected per seed parent: P =322, 526, 833, 

1250 and 2000. For s =1.00, Ne(v)= 0.5 per progeny, which corresponds to a single gamete sampled from an 

idealized population. 

In a broad review involving 30 tree species conducted by Sebbenn (2006), the number of seed parents (P) 

was computed for attaining an effective size of Ne(v)= 150. Values were obtained based on estimates of the 

average coancestry (  ) and the inbreeding coefficient (F), using molecular markers. The number of seeds 

collected per tree was considered large, such that (n-1)/n» 1 and (1+ F )/2n is negligible. Values of the 

number of seed parents (P) varied considerably among species, between 44 and 144, with an average of 

   = 67. Most species showed a predominantly allogamic mating system with s varying between 0.0 and 

0.25 and an average value of    = 0.08. 
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Table 5.4: Variance Effective Population Size (Ne(v)) Values of a Single Maternal Progeny for 
Several Sample Sizes (n) and Natural Rates of Self-Fertilization (s), Reference Population of 
Infinite Size in Equilibrium under Mixed Self- and Random Mating 

s 
n 

5 10 50 100 limit 

0.00 2.5 3.1 3.8 3.9 4.0 

0.25 1.7 1.9 2.2 2.2 2.2 

0.50 1.2 1.2 1.3 1.3 1.3 

0.75 0.8 0.8 0.8 0.8 0.8 

1.00 0.5 0.5 0.5 0.5 0.5 

Note: Ne(v) values obtained using equation 13. 

 

Recommendations for collecting mixed self- and random-mating species  

The dominating factors in the effective size values are  

 the number of seed parents  

 the population’s rate of self-fertilization (s)  

 

While practicing gametic control has a positive effect for increasing Ne(v), that diminishes as the number of 

seed parents decreases. 

Two-stage sampling model for dioecious species  

Several dioecious plant species are economically important, such as some domesticated dioecious arboreal 

species (Bandel and Gurgel 1967). Accounting for approximately 6% of angiosperms, dioecious species 

evolved from hermaphrodites in multiple independent events (Barret et al. 2010). Bawa (1980) mentions 

that dioecy is not as rare as is generally assumed. Bawa et al. (1985) found that there is a high level of 

dioecy (> 20%) among 333 tropical tree species. A similar percentage (22%) was found by Bawa (1974) 

among 130 lowland tropical tree species, and in the tropical savannah, it was found that about 15% of 

woody species are dioecious (Oliveira 1996; Oliveira and Gibbs 2000). Studying tropical coastal 

vegetation, Matallana et al. (2005) found 14% dioecy among 566 species and a higher percentage (35%) 

among dominant woody plants. In general, the percentage of dioecy among tropical forest trees and shrubs 

varies between 16% and 28% (Queenborough et al. 2007). 

Regenerating dioecious species  

Table 5.5 gives the results obtained by studying the effect of reducing seed viability or the germination rate 

(u; v) of an accession initially containing Nf =Nm = 100 individuals or seeds. Functional female and male 

parents are P=uNf  and M=vNm, respectively (Annex D, equations 16–18). 

Suppose enough resources are available for a plant-to-plant crossing scheme between the Nf = 100 females 

and males, aimed at achieving a total number of offspring of at least t = 200. After planting the seed, it is 

verified that only 50 of the male and female plants germinated. If female and male gametic control is 

practiced (by hand-pollinating female plants using plant-to-plant crosses and by taking an equal number of 

seeds per female plant), the resulting effective size is Ne(v)= 133.3 (Table 5.5) for r = 0.5 in the offspring 

generation. Equation 18 gives this value by taking t = 200, M =P =50, u=v=0.5 and r = 0.5. To achieve 

Ne(v) = 200 under these conditions, the number of parents should be higher, namely P=M = 66.7, such that 

u=v=0.67. For P=M=70 and u= v = 0.7, Ne= 215 for r = 0.5 (Table 5.5). To reach Ne(v)= t = 200 and the 

initial sizes, the following number of functional parents of each sex (P=M) would be necessary: 66.7, 68.6, 

and 76.4, for sex ratios r = 0.5, r = 0.4 and r = 0.3, respectively. These results indicate that losses of 25% to 

30% of plants in the field due to poor germination or to any environmental cause might be compensated 

for, at least in part, by female and male gametic control. If all female and male parents are used in the 
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crossing block and no loss of plants has occurred, the effective population size is doubled for r = 0.5 and 

reaches Ne(v) = 369.2 and Ne(v) = 289.6 for r = 0.4 and r = 0.3, respectively, with gametic control on both 

sexes. All values given here refer to a sample size of t =200. As expected, when the sex ratio deviates from 

r = 0.5, there is a reduction in Ne(v).  

Table 5.5: Variance Effective Population Size (Ne(v)) Values for Examples of Genebank Accession 
Regeneration with an Original Dioecious Reference Population with Nf = Nm = 100, under Random 
Mating, Assuming That t = 200 Offspring Are Sampled; Reducing Values of u and v (u = v); Three 
Sex-Ratio Levels (r = 0.3, r = 0.4 and r = 0.5) and Three Procedures of Gametic Control Random 
Sampling (RS), Female Gametic Control (FGC ) and Female Plus Male Gametic Control (FGC + 
MGC) 

 Ne(v) 

Nf = Nm P = M u = v RS  FGC  FGC + MGC  

---------------------------------------------------- r = 0.3 ------------------------------------------------ 

100 100 1 168.7 213.2 289.6 

100 70 0.7 124.1 146.5 178.7 

100 50 0.5 91.7 103.3 118.3 

100 30 0.3 57.0 61.2 66.1 

100 10 0.1 19.1 20.2 20.6 

100 5 0.05 10.0 10.0 10.2 

----------------------------------------------------- r = 0.4 ----------------------------------------------- 

100 100 1 192.9 253.4 369.2 

100 70 0.7 136.7 164.4 206.1 

100 50 0.5 98.4 111.9 129.7 

100 30 0.3 59.6 64.2 69.6 

100 10 0.1 20.0 20.5 21.0 

100 5 0.05 10.0 10.1 10.2 

------------------------------------------------------- r = 0.5 --------------------------------------------- 

100 100 1 201.0 267.6 400.0 

100 70 0.7 140.7 170.2 215.4 

100 50 0.5 100.5 114.6 133.3 

100 30 0.3 60.3 65.0 70.6 

100 10 0.1 20.1 20.6 21.0 

100 5 0.05 10.0 10.2 10.2 

Source: Extracted from Vencovsky et al. (2011). 
Note: RS, FGC and FGC + MGC based on equations 16, 17 and 18, respectively. 

 

As an alternative to the previous examples, consider that of the Nf =100 only 33 are available. With a 

germination rate of only 50%, the remaining functional parents will be P =16 and M =50, such that u=0.16 

and v=0.5. Since plant-to-plant crosses are not possible, male gametic control is not practicable and the 

option is to apply female gametic control. With these values and using equation 17, for t =200 and r =0.5, 

for the offspring generation, the resulting effective size is Ne(v)=51.7, which is relatively small due to the 

considerable reduction in the number of female parents and the impossibility of controlling the number of 

contributed male gametes. With the basic quantities remaining the same but a germination rate of 70%, 

P = (0.7)(33)23, M=(0.7)(100)=70, u=0.23 and v = 0.70, for a result of Ne(v)= 75.9. 
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When all individuals of the reference population are functional parents, the following values are obtained 

for t =f +m and r =0.5, Ne(v)=t for RS, Ne(v)=1.33t for FGC, and Ne(v)=2t for FMC+MGC (see Annex D, 

equations 19, 20 and 21). 

Recommendations for regenerating dioecious species 

Maintaining high levels of germination and viability is fundamental for preserving adequate Ne(v) values of 

accessions in genebanks. In the example,  

 a 20% increase in the germination rate leads to an increment of 24.2 units, or 46.8%, in Ne(v); 

 deviations of the sex ratio from r = 0.50 only have sizable effects on Ne(v) for larger values of u and v or 

when the viability of the accession is higher than 50% or 60%. 

Collecting dioecious species  

When collecting germplasm, the number of seed parents from which the seed samples are taken is, in 

general, a small fraction of the total population size, such that u tends to be small or negligible. In relation 

to the pollinator plants, the corresponding fraction v can also be smaller or larger than u, depending on the 

factors affecting pollen dispersal, the structure of the population and the size of the reference population. 

Suppose that resources are available for collecting only t = 200 seeds, stemming from P = 100 female 

parents randomly crossed with M = 100 males within an ecogeographic area. Assume that the population of 

females and males is very large (Nf = Nm = 10,000) such that only 1% of the total population is sampled 

(u = v = 0.01), and that female gametic control is used. The expected population size will be Ne(v) = 115.1 

(equation 17). For such small fractions u and v, the effective size is smaller than the sample size (t = 200) 

even with female gametic control (Table 5.6). Control of both types of gametes is rarely applicable in 

collection activities, but just for comparison, let us assume complete control of gametes. Effective size 

would then be Ne(v) = 134.2 (equation 18), with a gain of 16.6% relative to Ne(v) = 115.1. In this example, it 

was assumed that the sex ratio is r = 0.5 for both offspring and parents. 

Table 5.6 shows some applications of equations 16 and 17, with a constant number of functional parents 

but a decreasing degree of representativeness (u = v) and increasing size of the reference population (Nf ; 

Nm). It is assumed that the sex ratio remains the same between generations. Here parameter r is included as 

a peculiarity of some species. As already seen in previous items, as r deviates from the value r = 0.5, Ne 

becomes smaller. It should also be noted that sampling 0.1% or 5.0% of individuals in the parental 

generation has little effect on Ne(v). Female gametic control is required for obtaining Ne(v) = t, but the effect 

is noticeable only when u and v are large. 

Estimating Ne(v) in dioecious species requires distinguishing the sex of the offspring. Since this is generally 

difficult or impossible in plant seedlings or seeds, some strategies are necessary. An indirect procedure is 

estimating r at the adult stage in a natural population and transferring this value to the offspring.  

Another procedure is achieving some protection through gametic control. Establishing that a sample of 

t seeds should have an effective size Ne(v) ≥ t and if the entire set of parents participate in reproduction, the 

given condition will be achieved through female gametic control for a range of r values between 0.28 and 

0.72. With control of both types of gametes (FGC+MGC), this range is increased to 0.21 ≤ r ≤ 0.79 gametic 

control. Therefore, gametic control is also important when the sex ratio is not known. 

Recommendations for collecting dioecious species  

As r deviates from the value r = 0.5, Ne(v) becomes smaller.  

 Female gametic control is required for obtaining increased values of Ne(v); however, the effect is 

noticeable only when the percentage of seed germination is large.  

 Sampling 5% or 0.1% of adult plants of the population for seed collection has negligible effect on Ne(v). 
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Table 5.6: Variance Effective Population Size (Ne(v)) Values for Examples of Germplasm 
Collection in Dioecious Species, with Increasing Size of the Reference Random Mating 
Population (Nf; Nm), a Constant Total Number of Parents (P+M=200) and a Reducing Fraction of 
Functional Parents Sampled (u and v). Total number of seeds collected: t=200. 

 Ne(v) 

Nf Nm P M u = v RS FGC 

------------------------------------------------------ r = 0.3 -------------------------------------------------- 

60 140 60 140 1 168.8 213.1 

86 200 60 140 0.7 129.7 154.3 

120 280 60 140 0.5 112.4 130.4 

200 467 60 140 0.3 99.1 112.9 

600 1400 60 140 0.1 88.7 99.5 

1200 2800 60 140 0.05 86.4 96.6 

6000 14000 60 140 0.01 84.6 94.5 

60000 140000 60 140 0.001 84.3 94.0 

-------------------------------------------------------- r = 0.4 ------------------------------------------------ 

80 120 80 120 1 193.0 253.3 

114 171 80 120 0.7 148.3 181.5 

160 240 80 120 0.5 128.4 152.6 

267 400 80 120 0.3 113.3 131.7 

800 1200 80 120 0.1 101.3 115.8 

1600 2400 80 120 0.05 98.7 112.4 

8000 12000 80 120 0.01 96.7 109.8 

80000 120000 80 120 0.001 96.3 109.3 

--------------------------------------------------------- r = 0.5 ----------------------------------------------- 

100 100 100 100 1 201.0 267.6 

143 143 100 100 0.7 154.4 190.9 

200 200 100 100 0.5 133.8 160.3 

333 333 100 100 0.3 118.0 138.2 

1000 1000 100 100 0.1 105.5 121.4 

2000 2000 100 100 0.05 102.8 117.8 

10000 10000 100 100 0.01 100.8 115.1 

100000 100000 100 100 0.001 100.3 114.5 

--------------------------------------------------------- r = 0.6 ---------------------------------------------- 

120 80 120 80 1 193.0 253.6 

171 114 120 80 0.7 148.3 181.6 

240 160 120 80 0.5 128.4 152.7 

400 267 120 80 0.3 113.3 131.8 

1200 800 120 80 0.1 101.3 115.9 

2400 1600 120 80 0.05 98.7 112.5 

12000 8000 120 80 0.01 96.7 109.9 

120000 80000 120 80 0.001 96.3 109.3 
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Table 5.6: Continued. 

 Ne(v) 

Nf Nm P M u = v RS FGC 

--------------------------------------------------------- r = 0.7 ----------------------------------------------- 

140 60 140 60 1 168.8 213.6 

200 86 140 60 0.7 129.7 154.6 

280 120 140 60 0.5 112.4 130.6 

467 200 140 60 0.3 99.1 113.0 

1400 600 140 60 0.1 88.7 99.6 

2800 1200 140 60 0.05 86.4 96.7 

14000 6000 140 60 0.01 84.6 94.6 

140000 60000 140 60 0.001 84.3 94.1 

Source: Extracted from Vencovsky et al. (2011). 
Note: Two procedures of gametic control were used: RS (random sampling) and FGC (female gametic control).  
Five sex-ratio levels (r=0.3, 0.4, 0.5, 0.6 and 0.7) were assumed equal for offspring and parents.  
A sample of t=200 offspring is assumed. 
RS and FGC are based on equations 16 and 17, respectively. 

 

Sampling seeds from subpopulations 

As already mentioned, there are situations in which seed samples are intended to represent a large 

population composed of subpopulations or fragments in natural conditions. In such a case, the number of 

subpopulations (S) is an additional sampling unit to be taken into account. 

In this example, we consider that a sample of n =1000 seeds is taken from S subpopulations. We assume 

that an equal number of seeds (n/S) is sampled in bulk from each subpopulation and obtain Ne(v) values by 

applying equation 14 (Annex C). For evaluation, four degrees of genetic divergence due to drift among 

subpopulations (FST = 0.02, 0.05, 0.10 and 0.15) are incorporated. These subpopulations are considered to 

be in equilibrium with respect to the mating system, with a constant natural rate of self-fertilization (s), 

such that, within each one, the natural level of inbreeding is FIS = s/(2s). The relationship 

(1FIT)=(1FST)(1FIS) (Weir 1996) was used to obtain the total level of inbreeding FIT, which is also 

necessary for applying equation 14. To widen the example, we include two other potential situations, 

namely, (1) that the number of populations existing in the region is very large (S*= ) or (2) that this 

number is relatively small (S*=50). Pertinent Ne(v) values obtained for this example are given in Table 5.7. 

In equation 14, we considered that C
2 
= 0. 

A striking outcome in this example is that Ne(v) is strongly dependent on the number S of subpopulations 

sampled. This can be seen even when the divergence among subpopulations is only a small fraction of the 

total genetic diversity, such as when it is only 2% (FST = 0.02). Effective size barely reaches Ne(v) =500 for 

s < 50 and S*= , under random mating within subpopulations (s = 0) and with a mixed mating system 

(s = 0.5). The degree of among-subpopulation divergence (FST) also shows a predominant influence upon 

Ne(v). 

Equation 14 can be used for determining the number S necessary for obtaining a given Ne(v) value. If n is 

sufficiently large and S*= , this expression leads to S  2FST Ne(v). If, for instance, FST = 0.05 and the 

desired Ne(v) is 1000, then the necessary number is S 100 for large n, such that (1+FIT)/2n is negligible.  

When the reference population contains a finite set of subpopulations (S*= 50 in the example), the general 

trend remains the same. Effective size values for subpopulations with a mixed mating system (s = 0.5) are 

always smaller than the corresponding values obtained for s = 0, as was observed for the infinite model 

(S*= ). Also, in general, Ne(v) diminishes as among-subpopulation divergence (FST) increases. An 

exception occurs when all subpopulations are included in the sample (S = S*= 50). As expected, it is much 
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easier to represent a population in a sample when it is composed of a finite set of subpopulations than when 

a population includes a very large number of subpopulations. Such results demonstrate the importance of 

clearly defining the reference populations when computing an Ne(v) value. 

Table 5.7: Effective Size (Ne(v)) Values for Examples of n=1000 Seeds Collected from S 
Subpopulations, for Increasing Among-Subpopulation Divergence (FST), Two Levels of Self-
Fertilization (s) within Subpopulations and Two Models of Natural Population Size (S*) 

n = 1000 s = 0*   s = 0.5 

  S FST=0.02 FST=0.05   FST=0.10  FST=0.15   FST=0.02 FST=0.05   FST=0.10  FST=0.15 

S* = ∞ 

2 47.7 19.6 9.9 6.6  46.9 19.5 9.9 6.6 

5 111.4 47.7 24.4 16.4  107.4 47.0 24.3 16.4 

10 200.8 91.3 47.8 32.4  188.4 88.8 47.2 32.1 

25 387.6 202.0 112.4 77.8  344.0 189.9 108.7 76.1 

40 505.1 289.9 169.5 119.8  433.5 265.5 161.3 115.8 

50 561.8 339.0 204.1 146.0  474.7 306.1 192.3 140.2 

S* = 50 

2 48.6 20.0 10.1 6.8  47.9 19.9 10.1 6.8 

5 120.1 51.8 26.6 17.9  115.6 50.9 26.4 17.8 

10 235.6 109.7 58.0 39.5  218.7 106.0 57.1 39.0 

25 556.7 334.4 200.7 143.4  471.0 302.3 189.3 137.8 

40 844.5 684.8 520.7 420.1  661.9 562.8 450.4 375.4 

50 1020.4 1052.6 1111.1 1176.5  765.3 789.5 833.3 882.4 

* Ne(v) values obtained using equation 14. 

 

So far, we have stressed the importance of having a sufficient number S of subpopulations as sources for 

seed collection. In practice, we understand that such a sample of S subpopulations should not be taken at 

random. The fact is that, very often, adjacent subpopulations have a certain degree of genetic resemblance, 

a phenomenon detectable when genetic distances between all pairs of subpopulations are correlated with 

the corresponding geographic distances. This resemblance can be evaluated using morphological 

measurements or genetic data based on molecular markers. This technique involves estimating spatial 

autocorrelation, as shown by Sokal and Oden (1978a,b) and originally by Moran (1950). The ideal is to 

collect seeds from a subset S of subpopulations having the smallest possible degree of resemblance to each 

other. General results obtained by applying equation 14, as well as those given in Table 5.7, are applicable 

as strategies for in situ preservation. 
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Recommendations 

 Ne(v) is strongly dependent on the number S of subpopulations sampled.  

 The degree of among-subpopulation divergence (FST) also shows a strong influence upon Ne(v). 

Ne(v) diminishes as among-subpopulation divergence (FST) increases. An exception occurs when all 

subpopulations are included in the sample. As expected, it is much easier to represent a population in a 

sample when it is composed of a finite set of subpopulations than when a population includes a very large 

number of subpopulations.  

 It is important to define the reference populations when computing Ne(v). 

 When possible, collect seeds from a subset S of subpopulations having the smallest possible degree of 

resemblance to each other.  

General recommendations 

Regeneration and seed collection 

 Practicing female gametic control (harvesting an equal or approximately equal number of seeds per seed 

parent) is always recommended for all species. 

 When possible and especially for valuable materials, always obtain genetic information concerning the 

mating system of the species, based on molecular markers. This is especially important for species with 

mixed mating systems. 

 A computer programme for analysing marker data is available for this purpose: MLTR win (Multilocos 

Mating System Program) by Kermit Ritland (http://genetics.forestry.ubc.ca/ritland/programs.html). 

Regeneration 

 Avoid a loss of viability or germination below 60%–70% during storage of germplasm accessions. 

 In addition to female gametic control, also apply male gametic control when species is a cross-fertilizer. 

This requires plant-to-plant hand pollination and is important for accessions that have low germination 

(high degrees of deterioration). 

Collection 

 In the case of a single population, avoid harvesting large amounts of seeds from a small number of seed 

parents. This is valid for all species. To attain reasonable representativeness, harvest seeds from at least 

25 seed parents for cross-fertilizing species and 50 seed parents for autogamous species. 

 In the case of large and genetically structured populations in natural conditions, seeds should be collected 

from the largest possible number of sites or subpopulations. This is recommended when no additional 

information is available about the genetic structure of the population. 

 When possible, always obtain measures of the genetic divergence among collection sites or 

subpopulations of the species in a given ecogeographic region, and of the level of natural inbreeding. This 

can be done as an activity parallel to collection. The following computer programmes are available for 

this purpose: FSTAT by Jérome Goudet (www2.unil.ch/popgen/softwares/fstat.htm) and GDA (Genetic 

Data Analyses) by Paul O. Lewis and Dmitri Zaykin: 

(http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php). 

Future challenges  

Making general considerations about future challenges in regeneration and collection activities is not 

simple. Every programme in the area of genetic preservation and conservation has its own peculiarities, 

objectives and difficulties. There are, however, some goals all curators have in mind when collecting seeds 

for a genebank. One is to apply strategies that permit obtaining the best possible samples under specific 

circumstances. We believe that this goal can be achieved when the strategies are developed on the basis of 

genetic information furnished by molecular markers. It is worth remembering how important this 

information can be for conservation activities. The following points can be clarified using molecular 

techniques: 

http://genetics.forestry.ubc.ca/ritland/programs.html
http://www2.unil.ch/popgen/softwares/fstat.htm
http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php
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 the mating system 

 the degree of natural inbreeding 

 the level of genetic divergence among collection sites or subpopulations; area of seed and pollen 

dispersal; the degree of genetic relationship or coancestry between adult plants in natural conditions; the 

neighbourhood within which adults are genetically related 

 

There are three basic units to be considered in seed collection:  

 the number of seeds per seed parent 

 the number of seed parents per subpopulation 

 the number subpopulations 

 

Molecular genetic information allows one to find the ideal combination of these units for maximizing the 

representativeness of the seed sample. It also helps to define where the samples should be taken. 

We understand that the collection of valuable materials or of populations endangered by human activity 

should be supported by estimates of the parameters of population genetics obtained from molecular 

markers. Along with the use of dense molecular markers, which are becoming cheaper with time, the use of 

valuable bioinformatics visualization tools and efficient biometrical-statistical methods are indispensable 

tools that can assist genebank curators in making appropriate decisions about optimum sampling strategies 

for regeneration, collection and subpopulation structures.  
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http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php 

 

  

http://genetics.forestry.ubc.ca/ritland/programs.html
http://www2.unil.ch/popgen/softwares/fstat.htm
http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php
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Annex A: Two-stage sampling model for random-mating species 

Theoretical formulas for different sampling schemes of monoecious species 

For monoecious species, Crossa and Vencovsky (1994) derived the following Ne(v) expressions for different 

alternative sampling schemes for female and male gametes: 

Case 1: Plant-to-plant hand pollination is practiced and equal numbers of seeds taken from each plant 

(female plus male gametic control: FGC + MGC): 

 =
(1 - ) 3 (1 - ) 1

+ +
4 4 2

n
Ne(v) n u n v

P M

 
(3) 

Case 2: Pollination is random and the same number of seeds is taken from each seed parent (female 

gametic control: FGC): 
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(4) 

Case 3: Pollination is random and n seeds are randomly sampled from a bulk of seeds stemming from P 

seed parents (RS) and M pollen parents: 

 
(1 - -1 3 (1 - -1

+ + 1
4 4

n
N =e(v) n u) n v)
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(5) 

For seed collection for random-mating species, it can be assumed that the number of pollen parents M is 

very large, M  N, v  1, and the number of seed parents can be considered to be much smaller than N 

(PN) and u 0. This over-simplification is used for calculating an upper limit for Ne(v). With these 

assumptions, the approximate expressions are 
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for female gametic control (FGC) and 
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n
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(7) 

 for random sampling (RS) (Crossa and Vencovsky 1994). Equation 6 can be rewritten if the average 

number of seeds per seed parent    = n/P is introduced, resulting in Ne(v) = 4P ( 
  

    
 ),    being constant over 

seed parents, due to FGC. 
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Annex B: Two-stage sampling model for mixed self- and 
random-mating species 

The general equations for a fraction u of potential parents contributing female gametes and v, the fraction of 

potential parents contributing male gametes, are 

Random sampling (RS) 

[ ]
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(8) 

Female gametic control (FGC) 
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(9) 

The following equations were obtained for collecting n seeds from P seed parents (Vencovsky and Crossa 

1999a) of a population in inbreeding equilibrium and natural rate of self-fertilization (s): 

Random sampling (RS)  
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(10) 

Female gametic control (FGC)  
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(11) 

A fundamental Ne(v) expression is given by Cockerham (1969) for a group of n individuals or seeds 

differentiated from a reference population of infinite size solely by drift: 

       
   

 
   

 
     

    

  

  (12) 

where   is the average coancestry between all pairs of individuals and    is the average inbreeding 

coefficient. In practice, this would require using codominant genetic markers for estimating    and    . 

Equation 12 can be adapted for measuring the degree of representativeness contained in a single maternal 

progeny. If the population is in equilibrium with respect to self- and random-mating,    and    can be 

expressed as functions of the natural rate of selfing (s)    = 
      

      
 and    = 

 

   
 (Cockerham and Weir 1984). 
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Equation 12 can then be expressed as 

 
2 (2 - )

=
2(1 + ) ( -1) + 4

n s
N e

s n
 (13) 

For a single maternal progeny of size n, equation 13 is an overestimation since, in natural populations, a 

certain amount of out-crossed seeds can be biparental. This increases    and reduces the corresponding Ne(v) 

value. Equation 13 is equivalent to equations 10 or 11 when P=1. 

 

Annex C: Seed collection from several subpopulations 

Extending the theory developed by Cockerham (1969), Vencovsky and Crossa (2003) derived the following 

Ne(v)  expression: 

 Ne(v) = 1/(2D1) (14) 

 

where         
    

 
 

  

   
  

 

   
 

 

 
  

     

  
 

 with S >1 and S  S* for a total of n seeds collected randomly and in bulk within S subpopulations.  

When seeds are not collected in bulk but on a progeny basis, an additional sampling unit is incorporated, 

namely, the number of seed parents. Now the expression for estimating Ne(v) is (Vencovsky et al. 2007) 

 Ne(v) = 1/(2D2) (15) 
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 for a total of n seeds collected from P  seed parents. In equation 15, m is the average coancestry of 

offspring within progenies.   
  and   

  are the squared coefficients of variation of the number of seeds 

among subpopulations and among seed parents, respectively. 

 

Annex D: Two-stage sampling model for dioecious species 

Populations of arbitrary size with partial exclusion of parents 

Random sampling (RS) 

When there is no control of gametes, the variance effective population size is 

        
  

  
 (16) 
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where D3 = 
 

      
  +  

        

 
 + 

        

 
  if it can be assumed that 2Nf 1 2Nf ,  2Nm12Nm  and  

1/(2Nf 1) = 1/(2Nm1)  0, for a total of t seeds sampled from P seed parent and M pollen parents. 

Female gametic control (FGC) 

The expression is 

        
  

  
 (17) 

where D4 = 
 

      
  +  

      

 
 + 

        

 
 1, with the same assumptions considered for equation 16. 

Female and male gametic control (FGC + MGC) 

Now 

        
  

  
 (18) 

 where D5 = 
 

      
  +  

      

 
 + 

      

 
 2, with the same assumptions as before.  

Populations of arbitrary size when including all parents 

When no loss or rejection of parents has occurred and for sufficiently large parental populations, the 

following Ne(v) expressions were derived by Vencovsky et al. (2011). 

Random sampling (RS) 

        
   

   
 (19) 

 Female gametic control (FGC) 

        
   

    
  

   

 (20) 

 Female and male gametic control (FGC+MGC) 

        
   

    
   

   

 (21) 

 For sex ratio r =0.5, equations 19, 20 and 21 reduce to Ne(v)= t, 1.33t  and 2.00t, respectively. 

These expressions are adequate when the number of female parents (Nf) and male parents (Nm) of the 

reference population are such that 2Nf 1 2Nf  and 2Nm12Nm , and also that 1/(2Nf 1)  0 and 

1/(2Nm1) 0, as before. 


