

What is the QTLs and NON- Allelic Heterosis?

Wide Hybridization

- To transfer resistance to diseases and insects into japonica rice: Bl, BB, BPH, RBSDV, ShB, Stemborer
- Transfer of genes for weed competitive ability from African rice (O. glaberrima) into japonica rice
- Molecular characterization of alien introgression
 - Tagging of alien genes/QTLs and molecular cytogenetics
- Development of near-isogenic alien introgression lines for use in functional genomics

Production of F1 hybrids between japonica cultivars and wild species of *Oryza* ('03 – '06)

F1 hybrids		Method	Remarks		
O. sativa	Wild species				
Jinmibyeo	x O. rufipogon (AA)	Direct cross	Intermediate in morphology, partially sterile, normal chromosome pairing		
Ilpumbyeo	x O. rufipogon (AA)	Direct cross	Partially sterile		
			•		
Ilpumbyeo	x O. longistaminata AA)	Direct cross	Highly sterile		
Hwacheongbyeo	x O. glaberrima (AA)	Direct cross	Highly sterile		
Ilpumbyeo	x O. punctata (BB)	Direct cross	Completely sterile		
Jinmibyeo	x O. officinalis (CC)	Embryo rescue	Completely sterile		
Ilpumbyeo	x O. minuta (BBCC)	Embryo rescue	Completely sterile		
Junambyeo	x O. minuta (BBCC)	Embryo rescue	Completely sterile, limited pairing, irregular meiosis		
Junambyeo	x O. alta (CCDD)	Embryo rescue	Completely sterile		
Ilpumbyeo	x O. ridleyi (HHJJ)	Embryo rescue	Seedlings in test tubes		

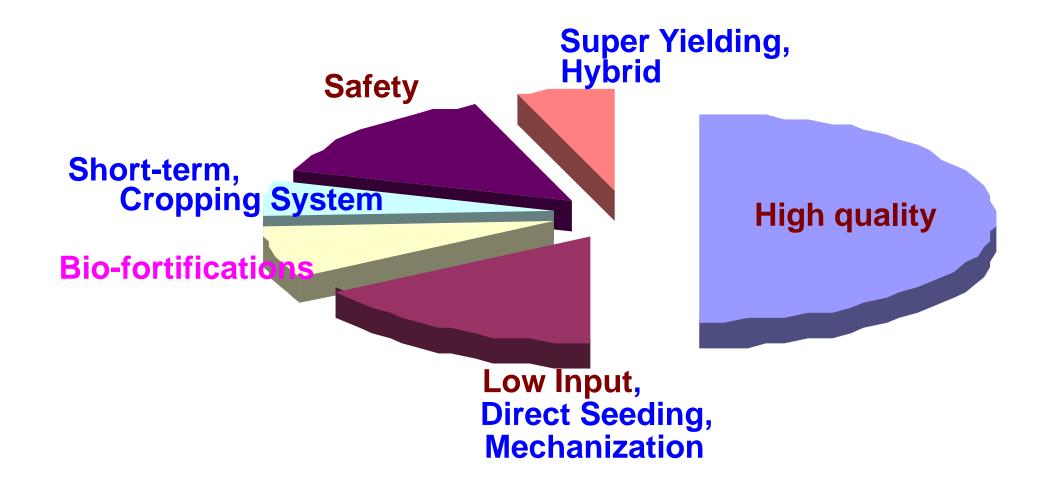
Breeding of elite lines from a cross of Hwaseonbyeo x *O. minuta* (2n=48, BBCC)

Variety	Year	Heading (mon.day)	Culm length (cm)	Diseas BI (1-9)	se resi BB (1-9)	stance BSDV (%)	Yield (t/ha)
Suweon 487	'02	8.14	78	7	7	0	5.46
Suweon 497	'03	8. 21	72	7	1	ND	4.94
Suweon 506	['] 04	8.13	109	1	1	ND	6.14
Hwaseongbyeo	-	8.12	85	7	8	56.3	5.22

^{*} BI, Blast; BB, Bacterial blight; BSDV, Black streak dwarf virus

Evaluation of Wide Cross Progenies

Targets of Rice Breeding



For Farmers	Higher income (yield/quality) Easier cultivation Resistance to biotic and abiotic stress Less materials
For Consumers	Good taste to be safe Nutrient to be cheap Easy to process Rich in functional ingredients
For Environment	Less chemicals Enrich biodiversity Beautiful landscape
For Future	Super high yielding Sustain high yielding system Enhance protein and oil yield

Rice Breeding Program in KOREA

The Goal of Rice Breeding Program in KOREA (I)

- **Development of high-palatable rice cultivars each institute**
 - Central zone adaptation with blast, brown planthopper resistance and with cold tolerance
 - West-southern region adaptation with bacterial blight resistance and with salinity tolerance
 - East-southern region adaptation with virus resistance and with cold salty wind tolerance

The Goal of Rice Breeding Program in KOREA (II)

- Development of high-quality rice cultivars adaptable to direct seeding
 - Lodging resistance
 - Better germination & emergence at low temperature
 - High-adaptability in dense planting
- Development of short-term rice cultivars adaptable to late transplanting after cash crops
 - Growth duration: shorter than 95days
 - Grain productivity per day: above 60 kg/ha

The Goal of Rice Breeding Program in KOREA (III)

Development of value added Functional rice cultivar

- **Low-albumen rice** (low-Glutelin rice) for treatment and prevention of diabetes, kidney disease, chronic renal failure, etc.
- > Developing rice varieties that have 16kDa globulin removed and have anti-allergy property (decreases atopy, etc.)
- > Developing iron-fortified rice varieties for pregnant women to prevent eficiency of red blood cells or anemia
- > Developing varieties with antioxidant function, such as high Anthocyan content in black brown rice.
- Developing gamma aminohutyric acid in rice for blood pressure letdown
- Developing Pro-vitamin A in rice for night blindness prevention
- Developing Isoflavone in rice varieties for the control of female hormone
- Developing low-content protein in rice for wine

The Goal of Rice Breeding Program in KOREA (IV)

- Development of new rice materials using biotechnology
 - > Enhancement of transgenic or regeneration efficiency
 - > Identification & isolation of useful gene sources
- Development of super-yielding rice cultivars
 - Target (2010): 10 t/ha in milled rice
 - Multi-resistance to major diseases and insect pests
 - ✓ Whole crop silage 20 t/ha in korea
 - New rice materials for super-yielding hybrid rice
 - Utilization of wide-cross compatibility genes
 - Enhancement of hybrid-seed productivity

The Vision of Rice Breeding in KOREA

> 2015

Milled rice yield(t/ha)

• High-quality rice: 6.5

• High-yielding rice: 10.0

Double cropping & Reduction cost

- Short-growth duration
 - Less than 100 days.
 - Grain yield : > 6.0kg/day/10a
- Adaptability to direct seeding
 - Lwo-temp germinability
 - Lodging tolerance,
 - Low tillering : < 10 tillers

Grain quality

- High quality rice
 - Marketing & milling quality
- Eating quality
- High-yielding rice
- Diversified grain size, shape
- Physicochemical properties
- Value added functional.

Safety in cultivation

- Stability of resistance to disease & insect pests
- Tolerance/Resistance to environmental stresses
- suitable for regional specificity

