
1-i) Review on Molecular Marker:A tool for genetic diversity research

Prof. K. Watanabe Gene Research Center, Univ. Tsukuba, Japan

Introduction

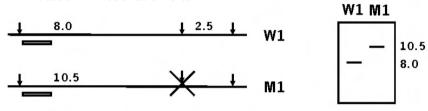
- The development of genetic marker
 - Morphologic marker (eg. flower color, plant height etc.)
 - Protein marker / Biochemical marker (eg. isozyme)
 - DNA marker / Molecular marker (RFLP, RAPD, SSR etc.)
- Molecular nature of naturally occurred polymorphism
 - Point mutation
 - Insertion / deletion
 - DNA rearrangement

The molecular basic of DNA marker

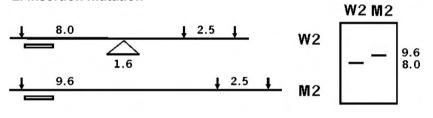
Introduction

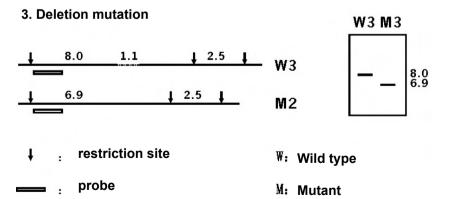
- Some regions of genome are significantly more polymorphic than singly copy sequences
 - Tandem repeats
- Synteny
 - In the use of molecular marker, an important observation is the finding that many distantly related species have co-linear maps for portions of their genomes.
 - Solanaceae
 - Gramineae
- Locus & allele
- Allele frequency & heterozygosity
- Dominant & co-dominant
- Polymorphism information

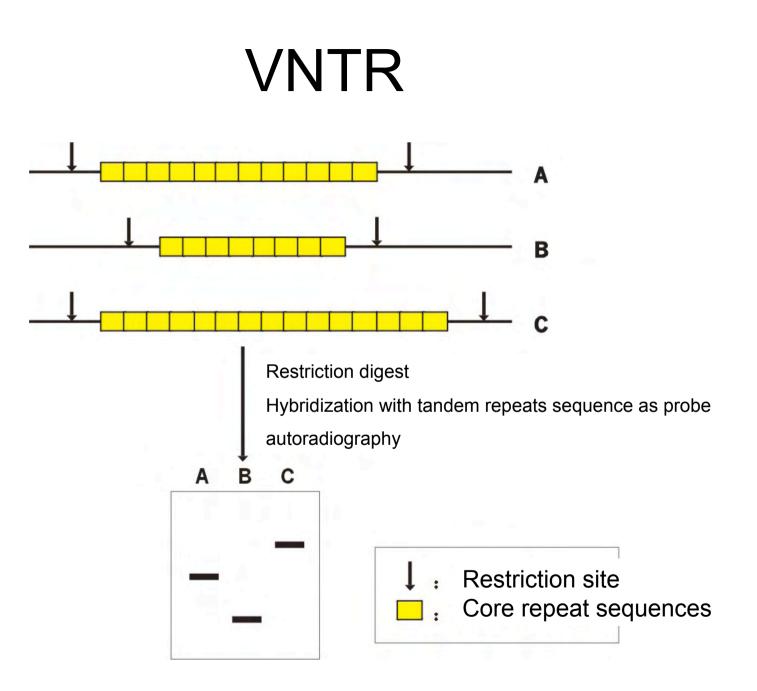
Classification of Molecular Marker by Detection Technology


- Based on DNA-DNA hybridization
- Based on PCR technology
- Based on restriction digest and PCR
- Based on DNA sequencing and microarray

Based on DNA-DNA hybridization


- RFLP, restriction fragment length polymorphism
- VNTR, variable number of tandem repeats


RFLP

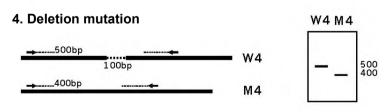

1. mutation in restriction site

2. insertion mutation

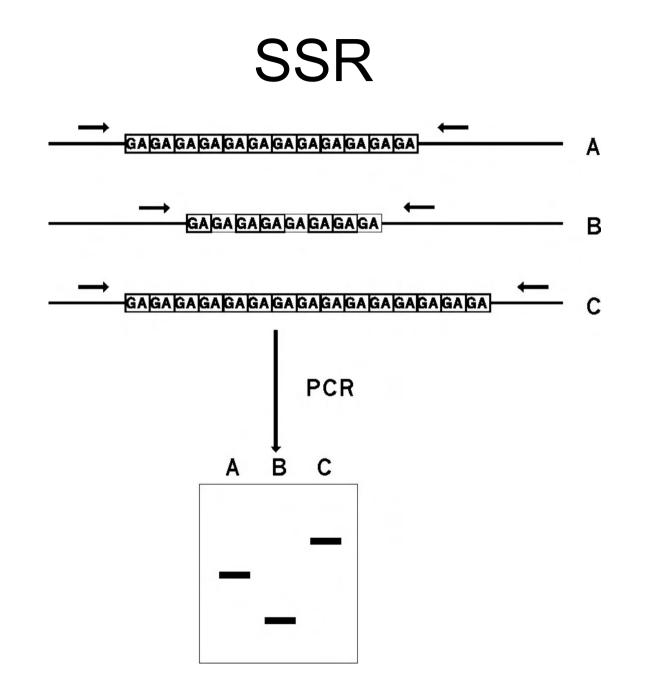
Based on PCR technology

- Based on random primers
 - RAPD, random amplified polymorphismic DNA
 - AP-PCR, arbitrarily primed PCR
 - DAF, DNA amplification fingerprinting
 - ISSR, inter-simple sequence repeats
- Based on special primers
 - SSR, simple sequence repeats
 - SCAR, sequence characterized amplified region
 - STS, sequence-tagged site
 - RGA, resistance gene analogs

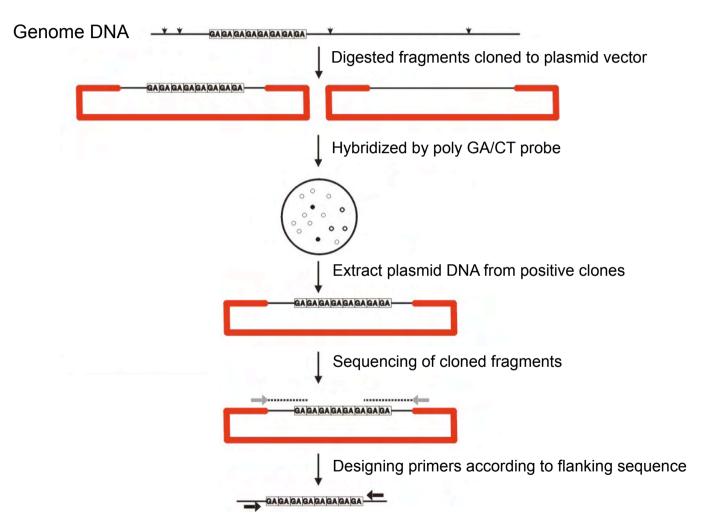
RAPD


1. Point mutation in PCR primer binding site -1 **1 M1 +---- 400bp ----W1 400 _ 400bp Μ1

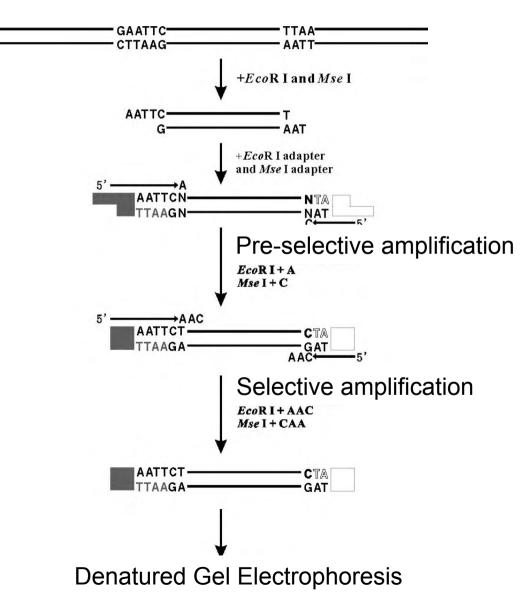
2. Point mutation in PCR primer binding site -2


	it matation	in PCR primer bind	ing one	vv2 M2
	400bp	4 150bp 🛻	W2	
-	550bp	¥ ·····		= - 4
-	550bp	×	M2	

3. Insertion mutation


5. III5e		iutatioi		W3 M3	
	400bp		 • W3		1
		150bp	- 115		550 400
	550bp		 M3		
			141.5		12

- ; primer +
- Wild type W:
- Mutant M:


Developing SSR Primers

Based on restriction digest and PCR

- AFLP, amplified fragment length polymorphism
- CAPS, cleaved amplified polymorphic sequence

Procedure of AFLP

Based on DNA sequencing and microarray

- SNP, single nucleotide polymorphism
 - SSCP (Single-strand conformation polymorphism)
 - DGGE (Denaturing gradient gel electrophoresis)
 - ASA (Allele-specific amplification)
 - GBA (Genetic bit analysis)
 - Oligonucleotide chip-based hybridization
 - MALDI-TOF MS (Matrix assisted laser desorption ionization, time of flight mass spectrometry)

Application of Molecular Marker

- Phylogeny
- Genetic diversity
- Molecular Mapping
- Gene tagging
- MAS, marker assisted selection
- Genebank management: duplicate identification
- Fingerprinting
- Quality testing

Phylogenetics

- Phylogenetics is the taxonomical classification of organisms based on how closely they are related in terms of evolutionary differences
- A phylogeny (or phylogenesis) is the origin and evolution of a set of organisms, usually species. A major task of systematics is to determine the ancestral relationships among known species (both living and extinct), and the most commonly used methods to infer phylogenies include cladistics and phenetics.

http://research.amnh.org/users/siddall/methods/

Phylogenetics: just methods - TyIE2	
文件(亚)编辑(亚) 查看(亚) 收藏(à) 快捷組(亞) 选项(亚) 工具(亚) 窗口(亚) 帮助(亚)	🛛 🗕 🕅
$ \bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc 2 \bigcirc \bigcirc \bigcirc 2 \bigcirc \bigcirc 2 \bigcirc \bigcirc 2 \bigcirc \bigcirc 2 \bigcirc \bigcirc \bigcirc 2 \bigcirc \bigcirc \bigcirc 0 \bigcirc 0$	
地址 💮 http://research. amnh. org/users/siddall/methods/	💽 🎝 🔸 搜索 🔎 molecular marker 💽 😒 🕈 🕗 🧟
🔗 :: 新) ::美国人 🕻 Google 👔 Phylog 🔥 Pop Ec Glossary Neterozyg Toplab: DNA 😪 Entre:	z 📶 Charac 🔯 hetero Phylogene 🏠 Phylog 🚳 Life o NDI Termi
Phylogenetics: <i>just</i> n	nethods
The number of available methods in phylogeny and systematics may appear to be daunting not only to begin say, PAUP* can learn how to "point and shoot" to make a neighbor-joining tree, or a cladogram or a likelihood tree probably like to know. This site is designed to do that. To provide you with an understanding of the various method is defensible and appropriate.	ee, but this doesn't really mean you know what you're doing and we suspect that you'd
TOPICS	
1. <u>Unweighted Pair Group Method</u> (<u>UPGMA, phenetics</u>) <u>Weighted Pair Group Method</u> (<u>WPGMA, phenetics</u>)	 Maximum Likelihood Differences of opinion between parsimony and likelihood
2. <u>Hennigian Argumentation (cladistics)</u> <u>Constructing Wagner Trees (cladistics)</u>	10. <u>Multiple Sequence Alignment</u> Optimization Alignment - Optalign, Poy Character Bootstrapping
3. Parsimony Analysis - <u>optimization, tree searching</u> (cladistics)	Character Dootstapping Character Jackknifing Taxonomic Jackknifing Noise Analysis
4. <u>implementations</u> in software	Bremer Support Cospeciation (e.g., host-parasite) Analysis Gene-tree/Species-tree Analysis
 weighting Distance Analyses ('minimum evolution') and models of stochastic DNA change 	Stratigraphic Analysis
7. Neighbor Joining	
Contact: Mark E. Siddall msiddall@umich.edu http://research.amnh.org/~siddall/ ph: 212 769 5638	

Molecular Mapping

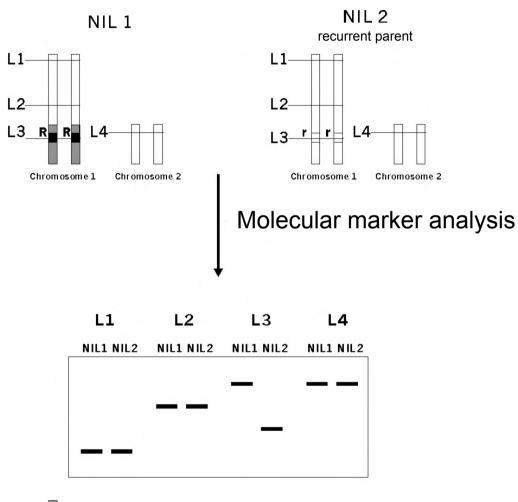
- Populations (parents & size)
 - $-F_2$
 - $-BC_1$, back cross
 - RI, recombinant inbred
 - DH, double haploid

Comparative of average physical distance and locus distance in different organisms

Species	Genome size (kb)	Genetic distance (cM)	kb / cM
Phage T ₄	1.6×10^{2}	800	0.2
E. coli	4.2×10^{3}	1,750	2.4
Yeast	2.0×10^{4}	4,200	4.8
Fungus	2.7×10^{4}	1,000	27.0
Nematode	8.0×10^{4}	320	250.0
Drosophila	1.4×10^{5}	280	500.0
Rice	4.5×10^{5}	1,500	300.0
Mouse	3.0×10^{6}	1,700	1,800.0
Human race	3.3×10^{6}	3,300	1,000.0
Maize	2.5×10^{6}	2,500	1,000.0

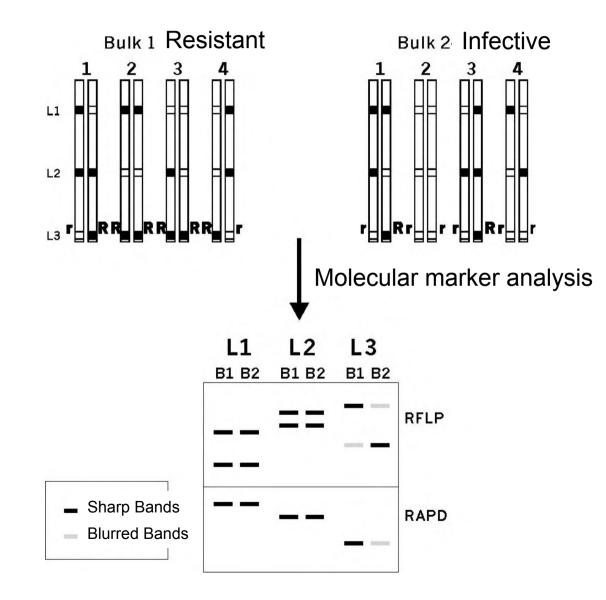

Needed marker number to reach specific saturated genetic map

Species		Human race	Rice	Maize	Arabidopsis	Tomato
Genome size	(kb) (cM) kb/cM	3.3×10 ⁶ 3300 1000	4.5×10 ⁵ 1500 300	2.5×10 ⁶ 2500 1000	7.0×10 ⁴ 500 140	7.1×10 ⁵ 1500 473
	20cM	165	75	125	25	75
	10cM	330	150	250	50	150
Map saturation	5cM	660	300	500	100	300
Map Saturation	1cM	3300	1500	2500	500	1500
	0.5cM	6600	3000	5000	1000	3000


Gene Tagging for Qualitative Trait

- NIL, near isogenic lines
- BSA, bulked segregant analysis

Diagram of developing NIL



Gene Tagging by NIL

Introduced exogenous fragments and gene

Gene Tagging by BSA

QTL Mapping

- QTL, Quantitative Trait Loci
 - mono-marker method
 - interval mapping, IM
 - composite interval mapping, CIM

MAS in modern breeding

- Foreground selection
- Background selection
- Gene pyramiding
- Gene transgression

Thanks