

Agricultural biodiversity for sustainable livelihoods

Emile Frison Director General, Bioversity International

Alliance of CGIAR Centres

"Improving lives through biodiversity research"

No laboratories or field sites

Research with partners (NARIs, NGOs, IGOs, Universities, local communities and others)

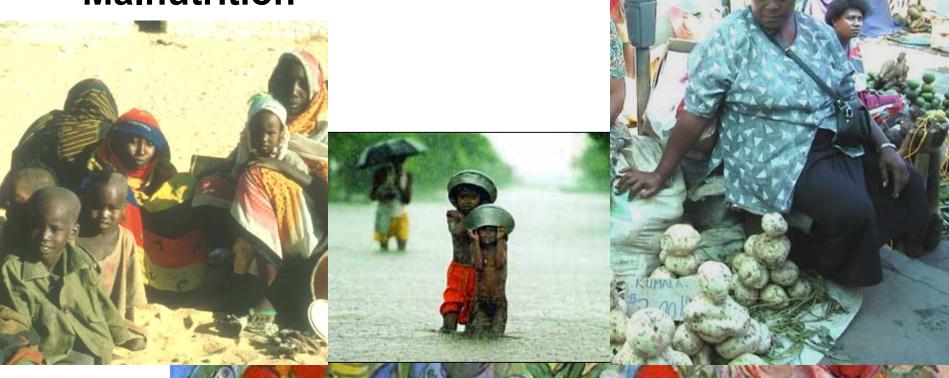
Also a catalyst, coordinator, facilitator, consensus broker, think tank

Interact with networks

Where we work

A staff of over 350 operating from 18 locations around the world

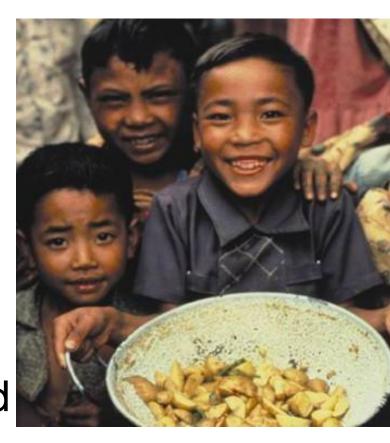
Diversity for Well-Being


- Focus on people
- Agricultural biodiversity:

-Conservation and use

- -Sustainability, resilience, nutrition
- Commodity based production systems (banana, coconut, cacao)
- Policy and public awareness

Increasing number of hungry and poor Threats of climate change Malnutrition



A growing world

By 2050... World population grows to 9.2 billion = growth of 37%

Increased consumption of animal proteins → increased demand on feed

Warming up: climate change

Temperatures rise up to 2.5 C

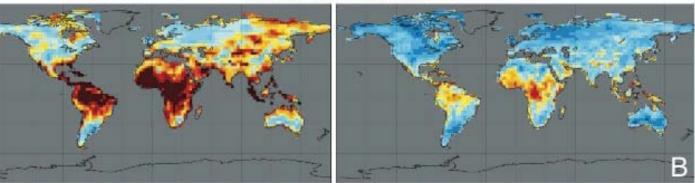
Changes in growing conditions

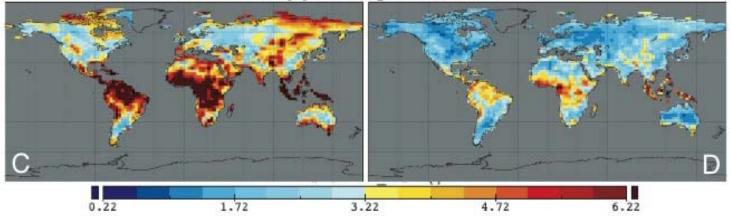
New pests and diseases

Water scarcity and

desertification

Greater weather fluctuations




Entirely new climates: where?

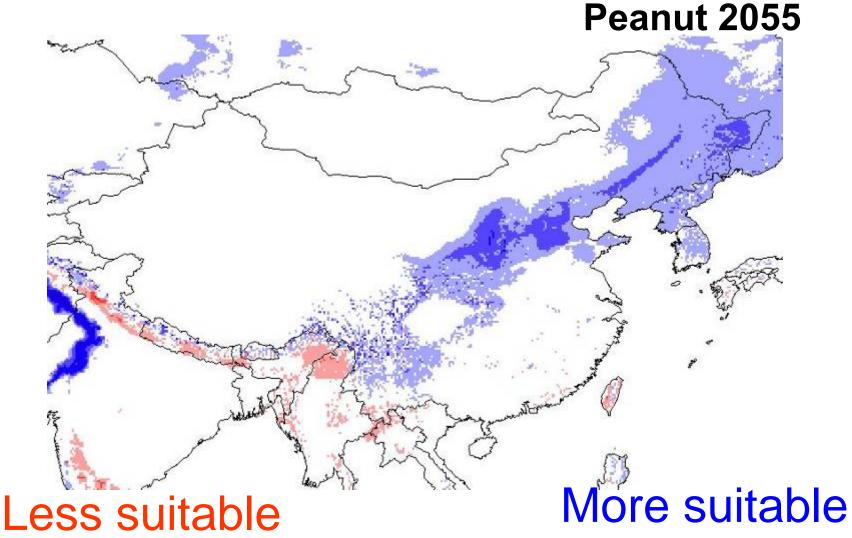
B1

A2 Novel Climates

Disappearing Climates

Hot colours, high risk of climate change

Changing conditions


Soybean 2055

Less suitable

More suitable

Changing conditions (2)

How will agriculture cope?

We need to adapt... Agricultural systems that produce more under harsher conditions while protecting the environment

Agricultural Biodiversity

Three levels of Diversity

- Ecosystems
- Species
- Genetic

Agricultural Biodiversity

Two broad categories – Managed – Unmanaged

Benefits of Agricultural Biodiversity

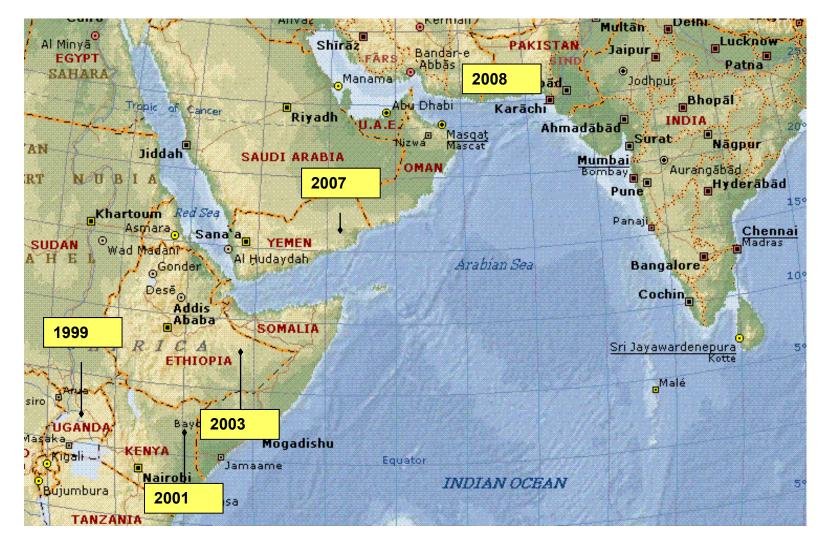
- Conventional view
 - Source of traits for crop and livestock improvement
- Unconventional, but gaining ground
 - As a source of resilience and stability
 - As a source of increased incomes, improved livelihoods and better nutrition (and health)

Genetic diversity

- Foundation of all improvements
- Generations of farmers
- Source for breeders too

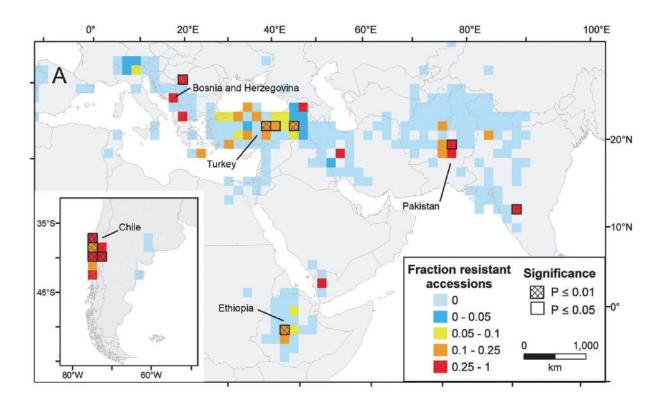
Managing pests and diseases

- One third of global harvest lost to pests and diseases
- Soybean Rust US\$ 2 billion projected losses in US
- Black sigatoka US\$ 350 million over 8 years
- UG 99 more than US\$ 1 billion projected in losses


Value of Crop Wild Relatives

Wild tomato: increase solids in pulp (US\$250M/year in California)
Wild peanuts confer resistance to root nematode (>US\$100M/year)
Wild rice provides resistance to grassy stunt virus (10M ha in Asia)

UG 99?



Sustainable use and genetic vulnerability – Ug99

Search for resistance

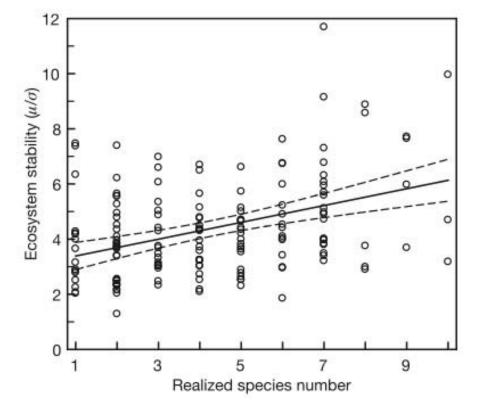
- Screened 5700 common wheat and 2719 durum wheat landraces (old data)
- Mapped resistance geographically
- Looked for excess presence of resistant accessions

Biodiversity delivers

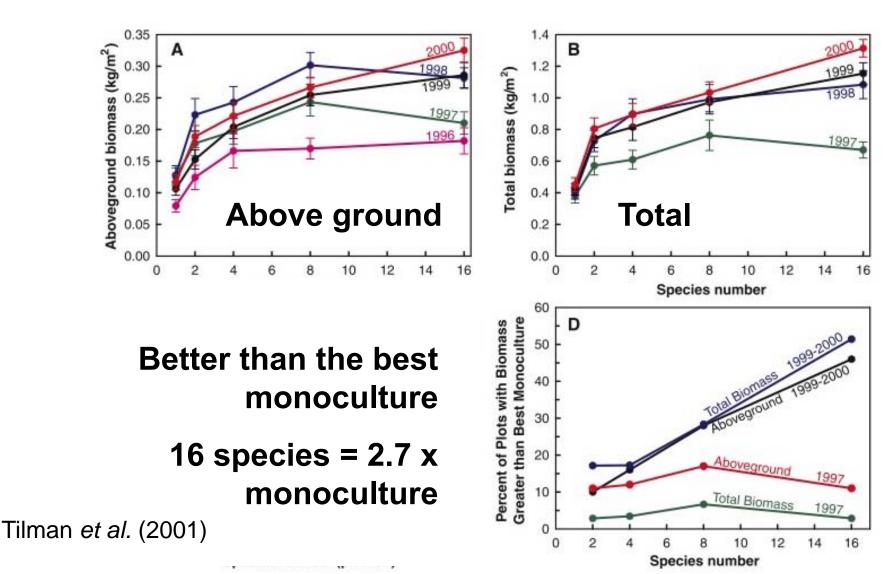
Diversity for ...

- Resistance to disturbances, pests and diseases
- Stable and productive harvests
- Environmental services

Intensification without simplification


Diversity and production

Diversity and stability



Long-term plots University of Minnesota

Tilman et al. (2006)

Diversity and Production

Bullock et al : Hay

- Convert arable fields to hay meadows
- Two seed mixtures
 Rich (25-41 species)
 Poor (6-17 species)
- Species rich yields 60% higher from 2nd year
- No difference in quality

Woldeamlak et al : Hanfetz

- Hanfetz in Eritrea: (67% barley 33% wheat)
- Barley 1511 kg/ha Wheat 1283 Hanfetz 1744

Also more stable year on year

Zhu et al : Rice blast

- Susceptible varieties in rows mixed with resistant varieties
 - 89% greater yield
 - 94% less severe disease
- Resurrecting traditional varieties
- Extended to species diversity

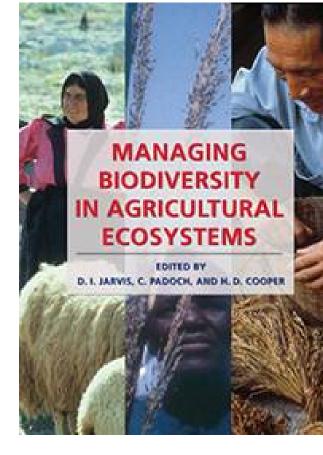
Wolfe et al : Barley mildew

East Germany

- Severity of mildew declined
 from 50% to 10%
- Yields maintained
- Post unification mixtures down, fungicides up

Diversity for managing pests and diseases

- UNEP-GEF Managing pests and diseases
 - Diversity to improve resistance and resilience
 - Maize, faba bean, rice, common bean, barley, cassava and banana
 - Begins with understanding farmer knowledge (participatory diagnostic tools)



Diversity for ecosystem services

Agricultural biodiversity for ecosystem services

- CO2 sequestration and climate regulation
- Nutrient cycling and soil fertility
- Pollination
- Water management
- Erosion control
- Pest and disease regulation

Improved ecosystem function

Valuing ecosystem services

- What is the value of these services?
- Difficult to measure in market terms (private/public good)
- Supporting and regulating services not valued: lack of policy

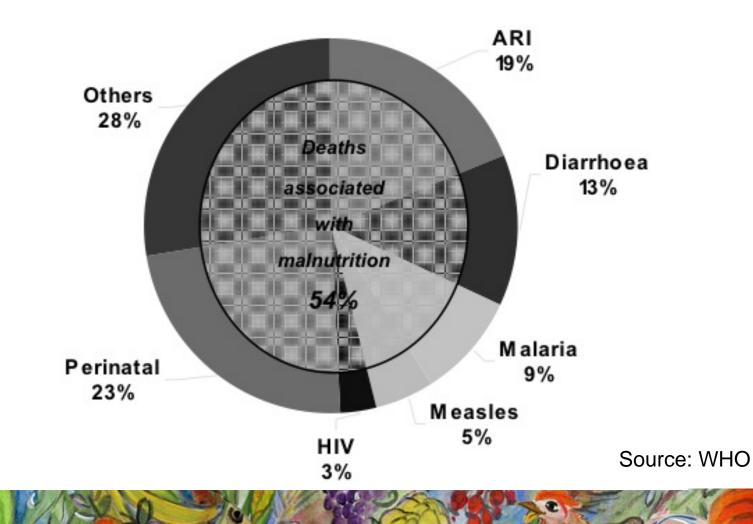
 \rightarrow need tools

Biggest benefit: better nutrition

- Hidden hunger: missing micronutrients
 - At least 2 million worldwide
 - Mostly women and children
- Double burden: diseases of "affluence"
 - Type 2 diabetes, obesity, heart disease, cancers

Child deaths per year

- Out of 3.5M child death per year, 63% or 2.2M are caused by underweight births and inter-uterine growth restrictions
- These are strongly correlated to poor maternal nutrition


Long-term impact of mother and child nutrition

- In first two years, irreversible
 - Worse health
 - Lower educational achievement
- Next generation
 - Underweight birth, even if nutrition is improved after 2

Deaths associated with malnutrition

Dietary Simplification (1)

 Cheapest food is energy rich but nutrient poor

- Energy from fats and oils in Senegal
 - 1963: 8%
 - 1998: 20%

Dietary Simplification (2)

- Reduced access to traditional and indigenous foods
 - Rural pressures
 - "Backward"

Benefits of diverse diets First world evidence

• USA

- decreased risk of mortality

• Italy

- decline in gastric cancer rate

- Sweden
 - a healthy diet increases longevity
- Sweden
 - decreased risk of colorectal cancer

Developing countries: only a few studies

- Kenya
 - Dietary diversity strongly and consistently correlated with anthropometric status
- Mali
 - Food Variety (no. of food items) and Dietary Diversity (no. of food groups) correlated with nutritional adequacy

Diversity of Diet

- Diverse diet protects
- Indigenous/traditional species/varieties offer nutritional advantages

Promote local agricultural biodiversity for improved diets and health

 \rightarrow Also more sustainable

Focus on neglected species

- Wide range of species, not all cultivated
- Indigenous, locally adapted, environmentally friendly, nutritious
- Perceived as backward
- Abandoned by scientists and ignored by policy makers
- Bioversity has slowly promoted and expanded to build a global project

African leafy vegetables

Per 100 gm	Amaranth (leaf)	Cleome	Nightshade	Cabbage
lron mg	8.9	6.0	1.0	0.7
Calcium mg	410	288	442	47
ß carotene ųg	5716	10452	3660	100

Kenya

- Traditional leafy vegetables
- Partnered with Family Concern (NGO) and Uchumi Supermarkets
- Seed supply and agronomy
- Training for cleaner, highquality produce
- Leaflets to educate shoppers
- Sales increase 1100% in two years

Reinvigorating culture

- Old people know the value of these crops
- Specific varieties for specific maladies

 Red rice for pregnancy and anaemia
 Rich sorghum for lactating mothers...
- Information as important as availability

 Recipe leaflets, cooking classes, promotion

Other examples

India: small millets

Bolivia: Andean grains

Impact on Nutrition and Health

 Need to build strong scientific evidence base at a sufficient scale to convince the major development actors

Agricultural biodiversity meets short term needs for the long term:

- Sustainable, resilient production systems
- More food, better nutrition, more income
- Environmental protection and sustainability

→ Agrobiodiversity: an essential tool for meeting tomorrow's challenges

Thank you